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1 RELATED WORK
1.1 Passive Dataset

Large-scale labelled datasets play an important role in cur-
rent development of artificial intelligence (AI) and machine learning,
e.g., ImageNet [7] and Microsoft COCO [27] have greatly facilitated
the advancements in both object detection and classification. More
recently, some datasets are beyond categorization tasks, e.g., Visual
Genome [23] focuses on learning the relationship. However, manu-
ally labeling dataset is proven to be tedious and error-prone, limiting
both its quantity and accuracy.

Synthetic image datasets have recently been a source of train-
ing data for object detection and correspondence matching [8, 11,
12, 29, 30, 34, 59], single-view reconstruction [17], view-point esti-
mation [49], human pose estimation [10, 31, 41, 45, 46, 52, 57, 60],
depth prediction [48], pedestrian detection [16, 28, 32, 53], action
recognition [37, 38, 40], semantic segmentation[39], scene under-
standing [5, 13, 14, 47], and in benchmark data sets [15, 18]. Pre-
viously, synthetic imagery, generated on the fly, online, had been
used in visual surveillance [36] and active vision / sensorimotor
control [50]. However, these datasets can only afford passive obser-
vation or very limited interactions, thereby difficult to generalize to
scenarios where an AI agent can interact with a human.

1.2 Simulation Platform
Table 1 summarizes detailed comparisons against similar simulation
platforms, showing the uniqueness of VRGym.

Robotics simulation platforms originated from the Robotics
Operating System (ROS) (e.g., Gazebo [21] and V-Rep [42]) have
been playing an important role in robotics development. However, as
these platforms focus on the robotics application, they rarely provide
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means for either the virtual reality (VR) integration or the human
interactions.

Virtual training platforms including OpenAI Gym [3] and
MuJoCo [51] are designed to evaluate and benchmark machine
learning algorithms. Although these platforms allow easy-setup and
fast training by providing interfaces with popular packages and
games, they still lack sufficient levels of interactions, especially for
physical agents.

Physics-based simulation platforms leverage the content de-
veloped by the game industry and incorporate sophisticated physics-
based simulation. For instance, CARLA [9] is an open-source simu-
lator for autonomous driving, whereas AirSim [44] provides a pho-
torealistic rendering of outdoor scenes for drone navigation. They
are, however, platforms for specific tasks, e.g., vehicle or drone navi-
gation. More general-purpose platforms are also available, including
AI2THOR [22] and Gibson [55]. Specifically, AI2THOR provides
detailed 3D indoor scenes where AI agents can navigate in the scenes
and interact with objects to perform tasks; however, there is no hu-
man embodiment, and most of the interactions are symbolic-level.
Although virtual agents in Gibson can receive a constant stream
of visual observations and a human can be represented as a Mu-
joco humanoid, it still lacks a sufficient level of manipulations and
interactions for the human embodiment.

1.3 Domain Adaptation
Although the presented work does not directly involve domain adap-
tation, this plays a vital role in learning from virtual environments,
as the goal of using virtual training is to transfer the learned model
and apply it to real-world scenarios. A review of existing work in

Table 1: Comparison with existing 3D virtual environments. Scale: Con-
tains a large number of scenes. Physics: Supports physics-based simula-
tion on agents and objects. Real: Provides a life-like rendering. Action:
Object states can be changed by actions. Fine-grained: Enables fine-
grained actions and simulates plausible object state changes. Human:
Humanoid agents. Multi: Supports a multi-agent setting.

Environment Scale Physics Real Action Fine-grained Human Multi

SUNCG [47] ✓

Matterport3D [5] ✓

Malmo [19] ✓ ✓ ✓

DeepMind Lab [2]

VizDoom [20] ✓

MINOS [43] ✓ ✓

HoME [4] ✓ ✓ ✓

Gibson [55] ✓ ✓ ✓ ✓

House3D [54] ✓ ✓ ✓

AI2-THOR [22] ✓ ✓ ✓

VirtualHome [33] ✓ ✓ ✓ ✓

VRGym ✓ ✓ ✓ ✓ ✓ ✓ ✓
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this area is beyond the scope of this paper; we refer the reader to a
recent comprehensive survey [6].

1.4 VR for Cognitive Studies and Machine
Learning

VR is capable of offering versatile settings for human training and
testing, providing a convenient way for cognitive studies to quickly
set up a specific scenario without building a costly physical apparatus.
There are many successful cases; some recent work includes study-
ing the deceptive behaviors [1], examining human physical judg-
ments in abnormal environments [58], improving driving habits [24],
designing the game level automatically [56], and training for earth-
quake [26].

VR is also a fast means to collect data and train for machine
learning. Towards this goal, some researchers have built plugins for
game engines, such as UETorch [25] and UnrealCV [35]. However,
to date, such plugins only offer APIs to control game state and record
data, requiring additional packages to train virtual agents.

In contrast, VRGym is capable of providing detailed logging of
the data generated inside VR environment, as well as supporting
training virtual agents directly for various tasks, subsuming the
functions provided in previous virtual environments.

2 SYSTEM PERFORMANCE
VRGym runs in real-time (30fps) on a modern PC with an Intel
8700K CPU, a set of DDR4 memory totaling 64GB, and an EVGA
GTX 1080 Ti GPU. Figure 1 shows the system performance running
the physics-based simulation of complex manipulation using the hu-
man input devices, together with the software and hardware interface
we develop. The results indicate that the VRGym is efficient on CPU
and memory utilization. As the real-time physics-based simulation
relies heavily on parallel computing, it requires relatively more GPU
power. In general, VRGym can be supported by modern computers
without requiring special setups or dependencies.

0 20 40 60 80

Time [s]

0

50

100

U
ti
liz

a
ti
o
n
 [
%

]

CPU Utilization

GPU Utilization

Memory Utilization

Figure 1: System performance: GPU (green), memory (blue), and CPU
(red) utilization.

3 EVALUATION OF COMMUNICATION
BANDWIDTH

A profile of the performance is shown in Figure 2, in which 20
packages are sent individually for each concurrent connection. The
communication latency for the VRGym-ROS bridge increases from
0.04sec to 0.41sec. Linear regression is fitted to the mean of the
latency t9= 2.9025, p= 0.01,r2 = 0.9998, indicating a strong linear

Figure 2: Evaluation of the latency in VRGym-ROS communication
bridge. Each connection contains 20 packages, in which 512Kb data
was sent. Linear regression is fitted to the mean of the latency t9=
2.9025, p= 0.01,r2 = 0.9998, indicating a strong linear trend with re-
spect to the increase of the concurrent connections.

trend with respect to the increase of the concurrent connections in
the VRGym-ROS bridge.
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