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Figure 1: Using Virtual Reality with Kinect body tracking & Leap Motion hand tracking, a real world agent moves a kettle in a virtual scene
by reaching out and grasping it. This singular action is happening within the context of a larger overall task: in this case, boiling some water.

Abstract

Both synthetic static and simulated dynamic 3D scene data is highly
useful in the fields of computer vision and robot task planning. Yet
their virtual nature makes it difficult for real agents to interact with
such data in an intuitive way. Thus currently available datasets are
either static or greatly simplified in terms of interactions and dy-
namics. In this paper, we propose a system in which Virtual Reality
and human / finger pose tracking is integrated to allow agents to
interact with virtual environments in real time. Segmented object
and scene data is used to construct a scene within Unreal Engine 4,
a physics-based game engine. We then use the Oculus Rift head-
set with a Kinect sensor, Leap Motion controller and a dance pad
to navigate and manipulate objects inside synthetic scenes in real
time. We demonstrate how our system can be used to construct
a multi-jointed agent representation as well as fine-grained finger
pose. In the end, we propose how our system can be used for robot
task planning and image semantic segmentation.
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1 Introduction

Consider a scenario where we are trying to train a robot to perform
atask in an indoor scene: say, find a can of coke, and pour some into
a cup. From the AI perspective, we could take a spatial-temporal
reasoning approach, using our knowledge about the 3D layout of
the scene as well as the coke bottle’s properties to predict a best ap-
proach [Durrant-Whyte 1988]. From a visual learning perspective,
we could teach the robot to use RGB or RGB-D data to navigate
the scene and infer appropriate grasp methods [Kragic et al. 2002].
In the robotics community, we would have it learn about the task
directly, either using reinforcement learning approaches by allow-
ing the robot to attempt the task repeatedly [Kaelbling et al. 1996;
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Levine et al. 2016], or using the scheme of Learning from Demon-
stration (LfD) [Argall et al. 2009] by collecting information about a
human performing the same task with synthetic grasping [Shimoga
1996]. No matter what our methodology might be, we must have
an appropriate dataset to train on, with the appropriate information
labeled. Generating this data is already nontrivial, but it only grows
more difficult as our task becomes more generalized: it might be
reasonable dealing with a can of coke in a single kitchen, but what
if we wish to expand to other beverages in other kitchens? What if
we need the robot to learn other tasks as well? Labeling aside, even
visiting that many scenes would be difficult.

One solution would be to use virtual environments instead of real
world scenes. 3D virtual environment data is publicly available
both as fully scanned scenes [Zhu et al. 2016; Xiao et al. 2013],
synthetic scenes [Handa et al. 2016; Handa et al. 2015], and scenes
that could potentially composed from CAD models [Chang et al.
2015]. Indeed, programs exist which allow robots to simulate inter-
actions with virtual environment [Miller and Allen 2004]. However,
these virtual environments usually lack a detailed virtual human
with fine-detailed interactions and complex indoor layout. Thus
we propose the use of Virtual Reality (VR).

Recent commercial advancements has made VR available to the av-
erage consumer, making the time right for its usage in research.
By combining VR with pose tracking technology such as the
Kinect [Shotton et al. 2013] and Leap Motion [Weichert et al.
2013], we can incorporate the agent into the scene as a multi-jointed
avatar capable of interacting with objects in real-time. Furthermore,
using VR provides not only data about the various objects making
up the scene, but detailed data about the agent as well, including
the trajectories, human poses at each frame, fine-grained articulated
hand poses.

We propose a system in which dynamic 3D scene models are im-
ported into a physics-based engine and then combined with a vir-
tual reality setup so that an agent can interact with each individual
objects, including subparts (e.g. closet doors, cabinet drawers) of
certain objects. This allows for the generation of fine-detailed dy-
namic manipulation data.

Related Work. Large-scale datasets have motivated the develop-
ment of artificial intelligence and computer vision research by pro-
viding training/testing data as well as benchmark suits and proto-
cols. Existing large datasets in computer vision field are mainly
focused on non-interactive objects [Deng et al. 2009; Chang et al.
2015; Lin et al. 2014] or static scenes [Xiao et al. 2013; Silberman
et al. 2012; Armeni et al. 2016], while robotics datasets are built
up for small scale, project-oriented task planning and learning ma-
nipulation in limited scenarios. A closely related topic in robotics
is social simulation among agents [Nehaniv and Dautenhahn 2007;
Shu et al. 2016].


http://dx.doi.org/10.1145/2992138.2992144

| VR Module | | Scene Module |

l l

| Task Planning Data | | Scene Data |

e

| Physics-based Engine Module
Filtered Task
ObJCCt 2z
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Figure 3: System Design
2 System Design

Our system [Fig. 2] is composed of three sub-modules: i) a VR
Module, which collects data about the real world agent (e.g. head
pose, body pose, hand pose), and displays the virtual environment
to the agent, ii) a Scene Module, which provides 3D data about
the virtual scene, and iii) a Physics-based Engine Module, which
consolidates all the data, allowing the real world agent to interact
with the virtual environment [Fig. 3].

2.1 Scene Setup

Scenes are constructed in the 3D modeling software SketchUp us-
ing assets downloaded from 3D Warehouse. Additional segmenta-
tion and scaling of the model is applied to obtain movable sub-parts
and maintain consistent scale. For non-manipulable stationary ob-
jects in the scene (e.g., large furniture), we use SketchUp to com-
pose them as a singular mesh. The composition is performed in the
way such that the mesh is entirely contained within octant IV in
SketchUp and faces the negative x-axis. This means a projection
of the scene into the xy plane would place the origin at the scene’s
bottom left corner, while the entirety of the scene remains within
the positive z-axis. Similarly, in the case of movable objects to ma-
nipulate, the object is placed in the scene such that it is contained
entirely in the the z-axis and a projection onto the xy plane places
the origin in its center.

Figure 4: An agent is wearing an Oculus Rift Headset with a Leap
Motion controller mounted on its front, while standing on a dance
pad and facing towards a Kinect sensor.

2.2 VR Setup

The agent wears an Oculus Rift, which serves to both display the
virtual scene to the agent as well as to collect the agent’s head loca-
tion for use by the engine. Mounted on the Oculus Rift is the Leap
Motion Controller, which allows for fine-grained articulated finger
tracking. Since the Kinect does not perform well if the agent’s back
is facing the sensor, the agent is asked to orient themselves such that
their body is always facing towards the Kinect sensor to ensure op-
timal body tracking [Fig. 4]. Due to the limited range of the Kinect,
the agent cannot physically navigate through a large virtual envi-
ronment, hence an additional control scheme is required to navigate
the virtual scene. Since the agent’s hands must be free to interact
with the scene, we have elected to use an eight-directional dance
pad. This allows the agent to translate with two degrees of freedom
(forward-back, left-right) and rotate without constraint around the
vertical axis all while remaining within a constrained area and ori-
entation. The dance pad serves the additional function of providing
a defined location relative to the Kinect and Oculus’ camera where
the agent must stand.

2.3 Engine Integration

We chose to use Unreal Engine 4 (UE4) for our physics-based en-
gine. UE4 is capable of simulating rigid body dynamics, soft body
dynamics, and fluid dynamics. It is designed for demanding appli-
cations such as high quality real-time rendering. Its built-in support
for VR development makes it easy to work with and also helps with
rendering complex scenes at consistently high frame rates.

Scene Data Import. The scene data is exported from SketchUp as
either FBX file or DAE file with the units set to centimeter, which
is the standard unit within Unreal Engine 4. The auto generated
collision boundaries are replaced with more accurate ones by using
”Auto Convex Collision” and setting parameter “Accuracy” to 1.0
and “Max Hull Verts” to 32. In the case where this step fails, we
instead build a collision boundary from system defined collision
components.

Avatar Setup. The VR data is polled from within UE4 to set up the
pose and orientation of the virtual representation of the real world
agent, hereon referred to as the avatar. The avatar consists of three
components: i) a humanoid mesh that can be deformed accordingly
based on the underlying skeleton; ii) a root transform, used to define
the overall position of the avatar inside the virtual scene; and iii)
a camera transform, which represents the viewpoint of the agent
within the scene. The hierarchy of these components is setup such
that the root is the parent of the avatar and the avatar is the parent
of the camera, with any changes in the parent’s orientation also
affecting the child’s. The camera transform is attached to the head,
where a person’s eyes would be.

System Initialization. Upon starting the simulation, the avatar is
spawned at a predefined start point. Once tracking is established
and the agent is in position, the system is calibrated to determine
the transformation between the coordinate systems of the sensors,
the avatar and the virtual scene. This allows for the translation of
joints to be properly set.

Sensor Data Fusion. With each time step, input from the dance
pad is applied as translation and vertical rotation to the root trans-
form. Data from the Kinect is then used to set the avatar’s pose. We
start by defining the hips joint of the skeleton as the root and setting
its transform relative to the avatar’s root transform. Joint orienta-
tion data from the Kinect is then applied to the avatar’s skeleton
using forward kinematics. The precise position of the head and
hands, as taken from the Oculus Rift and Leap Motion controller,
are set in skeleton, with inverse kinematics being used to adjust the
rest of the skeleton. The orientations of the individual finger joints
are then taken from the Leap Motion and used to set the skeleton’s
fingers using forward kinematics. Through the above processes, an
accurate body pose is fused from different sensors while prioritizing
areas particularly crucial to object manipulation and user comfort.



3 Applications

Figure 5: Agents performing tasks. Top left: boil water; Bottom
left: close fridge; Top right: shake hand; Bottom right: hand coke.

We consider how our dataset can be used for robot task planning
and large-scale image semantic segmentation. Some examples of
the dataset are shown in Fig. 5.

Task planning requires that the agent understands how to decom-
pose the high-level tasks into sub-tasks in a recursive fashion until
reaching the level of atomic actions which are executed in an cer-
tain order (Fig. 6). Widely used schemes include Hierarchical Task
Network (HTN) [Erol et al. 1994] and Markov Decision Process
(MDP) [Kaelbling et al. 1998].

To define these atomic actions, we can take advantage of the con-
cept of causality, or the relationships between actions and object
states over action time [Fire and Zhu 2013; Li et al. 2016]. Fig. 7
illustrates the causality between atomic action and object state. Ob-
ject proximity is used to define action time, as an action may only
begin when the agent is close enough, and must end once the agent
is too far away. Thus we can define an atomic action as a state tran-
sition that occurs while the agent is within some reasonable distance
of the object. For motion planning, we need to understand what mo-
tions the agent is making in order to complete each atomic action.
This is relatively straightforward to determine from our dataset, as
we are already capturing joint-level orientation over time from the
Leap Motion and Kinect and converting it into a single coordinate
system for the sake of controlling the avatar. We can then use the
time frames from the task planning data to map the appropriate mo-
tions to the appropriate task action.

Semantic Segmentation. Each object in the 3D scene is either
manually segmented and labeled after reconstruction of the real
scenes, or automatically labeled for synthetic scenes. By project-
ing the 3D scenes into 2D images together with their ground truth
labels of objects, each pixel of the 2D images will come with a
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Figure 6: Task illustration of opening a fridge. Blue: task planning
recorded in VR. Yellow: Motion planning recorded by leap motion.
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Figure 7: Object state change when opening a fridge. Top: object
state changing with atomic actions; Bottom: notations.

label, which forms the ground truth for image semantic segmen-
tation. Compared to current computer vision datasets for seman-
tic segmentation, which are manually segmented and labeled, our
method would provide better precision on object boundaries which
could potentially boost the performance using current deep learn-
ing methods. Furthermore, the 3D scenes can be projected onto
arbitrarily many viewpoints at different points during agent-scene
interaction, resulting in virtually unlimited training data for seman-
tic segmentation.

4 Future Directions

In simulating interactions between the agent and surrounding ob-
jects, we consider two methods: physical simulation and hand pose
detection. Physical simulation simulates forces between the agent
and the object in order to affect some change in the object. This
is closer to reality, but has difficulty simulating delicate grasping
actions, and can result in hand-mesh penetration, which the physics
system cannot reconcile, as shown in Fig. 8. Hand pose detection
requires a predefined primitive motion be performed in the correct
region relative to the object. We record these primitive actions in
advance, and their data is registered with a margin of error. If the
agent is detected using the appropriate motion in the correct region,
then the object state will be updated accordingly. Hand pose de-
tection is more reliable for actions that are difficult to physically
simulate. However, as a result we lose all object-hand interactions,
not just those which are physically impossible. The final system
will likely use some mixture of these methods.

Our system can be further improved by making it more intuitive for
the agent. While our current scene navigation system works, one

Figure 8: Fuilure case in which the agent’s hand penetrates the
object’s mesh.



that would allow the agent to walk around freely would be more
natural for the agent. Methods exist which map virtual and physi-
cal spaces[Sun et al. 2016], however we would need to deal of the
further constraint of maintaining Kinect tracking no matter how the
agent moves. Another point where interactivity can be improved
is the lack of force feedback for the human agent. Areas of fur-
ther investigation would be some kind of haptic force feedback, or
an augmented reality solution, where key objects have a physical
representation [Azmandian et al. 2016] It would also be interesting
extending the system to accommodate two or more agents, in which
case investigating both verbal and nonverbal means of communica-
tion in VR is necessary [Li et al. 2015]

5 Conclusion

In this paper, we propose a system in which dynamic 3D scene
models are imported into a physics-based engine and then com-
bined with a virtual reality setup, thus allowing a human agent to
interact intuitively with the virtual scene. In the process of generat-
ing these dynamic scenes, we investigate both constructing scenes
from CAD models and segmenting whole scenes constructed via
SLAM and other computer vision models.

Aside from allowing a human to interact with a physical scene, our
system carries the added benefit of more detailed data on agent tra-
jectory and hand pose. In using the Kinect for body tracking, we
represent the agent not as a single point, but a series of joints in
space. We also use the Leap Motion to acquire in detail human fin-
ger pose and generation. This allows us to generate fine-detailed
dynamic manipulation data.

The applications of a robust virtual reality testing environment are
also many, and can extend into remote human-robot interaction ex-
periments as well as remote evaluation for robotics competitions.
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