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An illustration of learning and inference framework
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Quantitative results

In this paper, we rethink object recognition from the perspective of an agent:
how objects are used as “tools” in actions to accomplish a “task”.
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Problem definition

Rational human choice assumption: we assume human chooses the optimal
tool and tool-use based on the essential physical concept.

| , |
=/~~~ '/'/

) v . 1 n 2
We formulate the tool min 5 W w+ A Z &;

recognition as a ranking
problem, so that learned
tool model w - ¢(pg)
satisfies the maximum
number of constraints:
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The human demonstration pg* has the highest ranking score compared with
the other tools and tool-q.ses Pg;.
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Qualitative results

Given three tasks: chop wood, shovel dirt, and paint wall, our algorithm picks
and ranks objects for each task among objects in three groups: 1) conventional
tools, 2) household objects, and 3) stones, and output the imagined tool-use:
affordance basis, functional basis, and the imagined action pose sequence.

Group 1: canonical tools| Group 2: household objects Group 3: stones
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Exp 1. The distribution of human judgments about what the essential physical
concepts are vs. learned coefficients of different physical concepts.
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Exp 2. Recognizing tools for chopping wood. EXxp 3. Imagined tool-uses.
The scatters show tool candidates ranked by N %
our algorithm (y-axis) with respect to the
average ranking by human subjects (x-axis).
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correlation of ranking| chop wood shovel dirt paint wall 3D distance (cm) | chop wood shovel dirt paint wall
algorithm vs. human | tool |0bject‘stone tool ‘object‘stone tool ‘0bject|stone algorithm vs. human t001|0bjem|smne t001|0bjem|smne t001|0bjm|smne
Ba -top 1 175] 3.02 | 3.19 [1.17| 2.03 | 3.28 |0.43| 2.48 | 2.86
tool + random use |0.07| 0.14 | 0.20 [{0.52| 0.32 | 0.09 |0.12] 0.11 [ 0.31 B -top3 o2l 217 | 281 10971 052 1 221 10311 232 | 2.67
tool + inferred use [0.48| 0.25 | 0.89 [0.64| 0.89 | 0.14 |0.10| 0.64 | 0.20 Br -top | 048] 597 1391 l6.98] 6.38 10.23 |2.35] 2.7 | 2.65
tool + best use 0.83( 0.43 | 0.89 [0.64| 0.89 | 0.14 [0.10] 0.64 | 0.20 Bp -top 3 0.27| 592 | 3.95 |2.85] 3.29 | 0.31 [1.43| 2.64 | 2.71
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