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Supplementary Material

In Sec. S1, we present how we prepare the training data
on the 3D-FRONT [19] and Pix3D [69] datasets. In Sec. S2,
we report more implementation details, including model
architecture, learning curriculum, and training strategies.
Sec. S3 presents more experimental details, evaluation met-
rics, results, and failure case discussion. For a more com-
prehensive view of the qualitative results, we recommend
referring to the supplementary video with detailed visual-
izations and animations.

S1. Training data preparation
S1.1. Datasets and splits

3D-FRONT [19] contains synthetic and professionally-
designed indoor scenes populated by high-quality textured
3D models from 3D-FUTURE [19]. Following Liu et
al. [41], we use about 20K scene images for training and
validation and report quantitative evaluation on 2000 im-
ages in 8 different categories. Pix3D [69] provides real-
world images along with corresponding 3D furniture mod-
els that are aligned with the images in 9 object categories.
In the splits from Nie et al. [54] and [87], there is a sig-
nificant overlap of objects between the training and testing
split. Consequently, we follow Liu et al. [41] to employ a
split without overlapping objects.

S1.2. Fixing CAD models

One major issue with 3D-FRONT [19] dataset is that the
majority of the CAD models are not watertight, which hin-
ders the learning of SDF as the neural implicit surface rep-
resentations in our framework. To mitigate this issue, we
first utilize the automatic remesh method following Liu et
al. [41] to transform the non-watertight models into water-
tight ones with a more evenly-distributed topology. Addi-
tionally, we have noticed that some models, primarily beds
and sofas, lack a back or underside, confusing the model
when learning 3D object priors. Consequently, we have
manually fixed a total of 1734 models to resolve this issue.

S1.3. SDF supervision

In our framework, we employ supervision from both ex-
plicit 3D shapes and volume rendering of color, depth, and
normal images. The direct 3D supervision focuses on min-
imizing the differences between the predicted and actual
SDF values of the sampled points. To generate ground-truth
SDF values for a given CAD model, we voxelize its 3D
bounding box in a normalized coordinate system with a res-
olution of 64. The SDF value for each voxel grid center
is calculated as the distance to the mesh surface. The SDF

value is positive if the point is outside the surface and neg-
ative if inside. During training, we obtain the ground-truth
SDF value for the query points using trilinear interpolation.

S1.4. Monocular cues rendering

To further alleviate the ambiguities in recovering 3D shapes
from single-view inputs, we follow Yu et al. [84] to ex-
ploit monocular depth, normal, and segmentation cues to
facilitate the training process. However, since these images
are not available in the 3D-FRONT [19] dataset, we ren-
der them using the 3D scans of the scene, 3D CAD models
of the objects, and the camera’s intrinsic and extrinsic pa-
rameters provided in the dataset. The Pix3D [69] dataset
offers instance segmentation but lacks depth and normal
images. Since rendering is impossible, we utilize the esti-
mated depth and normal maps as the pseudo-ground-truth
from state-of-the-art estimator [17]. Note that the depth,
normal, and segmentation information is solely used dur-
ing the training stage to guide the model’s learning process,
and none is required during the inference stage. This en-
sures that our model remains flexible and applicable to var-
ious scenarios.

S2. Technical details
S2.1. Model architecture

For the implicit network, we use an 8-layer MLP with hid-
den dimension 256. We implement the rendering network
with a 2-layer MLP with hidden dimension 256. We use
Softplus activation for the implicit network and Sigmoid
activation for the rendering network. We use a ResNet34
backbone pre-trained on ImageNet as the image encoder
following Yu et al. [83]. We use positional encoding γ from
NeRF [51] for the spatial coordinates, with L “ 6 exponen-
tially increasing frequencies:

γpxq “ p sinp20ωxq, cosp20ω

sinp21ωxq, cosp21ωxq,

. . . ,

sinp2L´1ωxq, cosp2L´1ωxqq

(S1)

S2.2. Learning curriculum

As discussed in the paper, we propose a two-stage learn-
ing curriculum to effectively employ supervision from both
3D shapes and volume rendering. In Stage One, the loss
weight is set to be 1 for the 3D supervision L3D and 0 for
the rest of the losses. In Stage Two, we linearly increase the
loss weights for color, depth, and normal supervision while



maintaining a constant weight for the 3D supervision loss.
We utilize the L3D loss curve when training with 3D super-
vision only to determine the suitable value for λ0. Specif-
ically, once the training approaches convergence according
to the SDF loss curve, we identify the epoch at this point as
the suitable λ0 value. In our paper, we choose λ0 “ 150.
Slight deviations below or above this threshold have mini-
mal impact. However, significantly reducing the value, such
as λ0 “ 0 or λ0 “ 70, results in substantial degradation of
performance because early injection of 2D supervision may
affect the 3D shape learning due to the shape-appearance
ambiguity. More discussion can be referred to the ablation
experiments in Sec. 4.1.

S2.3. Training strategy

During training, the image, depth, and normal images have
the same resolution of 484 ˆ 648. The implicit network
takes 3D points as input in canonical coordinate system to
ease the learning of reconstructing indoor objects with im-
plicit representations. The volume rendering is performed
along the sampled points in the camera coordinates to cal-
culate the color, depth, and normal values for all the pixels
in a minibatch. We sample 64 rays per iteration and apply
the error-bounded sampling strategy introduced by Yariv et
al. [82]. We additionally apply 3D supervision to another
30,000 points uniformly sampled near the ground-truth sur-
faces (set X ). Our model is trained for 400 epochs on 4
NVIDIA-A100 GPUs with a batch size of 96. We imple-
ment our method in PyTorch [60] and use the Adam opti-
mizer [37]. The learning rate is initialized as 1e-3 and de-
cays by a factor of 0.2 in the 330th and 370th epochs.

S3. More experiment details and results
S3.1. Evaluation metrics

3D object reconstruction Following Wang et al. [75]
and Mescheder et al. [50], we adopt Chamfer Distance
(CD), F-Score and Normal Consistency as the metrics
to evaluate 3D object reconstruction. Following prior
work [41], we proportionally scale the longest edge of re-
constructed objects to 2m to calculate CD and F-Score. Af-
ter mesh alignment with Iterative Closest Point (ICP) [4],
we uniformly sample points from our prediction and
ground-truth. CD is calculated by summing the squared
distances between the nearest neighbor correspondences of
two point clouds after mesh alignment. The values of CD
are reported in units of 10´3. We calculate precision and
recall by checking the percentage of points in prediction
or ground-truth that can find the nearest neighbor from the
other within a threshold of 2mm. F-Score [38] is the har-
monic mean of precision and recall on in prediction and
ground-truth. Finally, to measure how well the methods can
capture higher-order information, the normal consistency

score is computed as the mean absolute dot product of the
normals in one mesh and the normals at the corresponding
nearest neighbors in the other mesh after alignment.

Depth and normal estimation We adopt the L1 error
for depth estimation and utilize both L1 and Angular errors
for normal estimation following Eftekhar et al. [17]. Since
the baseline methods [17, 86] estimate relative depth val-
ues rather than absolute ones, we first align the estimated
depth values with the ground-truth values to the range of
r0, 1s using the approach outlined in Eftekhar et al. [17].
After the alignment, we compute the L1 error to quantify
the discrepancy. For normal estimation, we normalize both
the estimated and ground-truth values to unit vectors and
then compute the L1 error and the angle error for evalua-
tion.

S3.2. Indoor object reconstruction

S3.2.1 Experiments on 3D-FRONT and Pix3D

In this subsection, we provide more details about our re-
produced results and more qualitative results. Tabs. S1
and S3 list the quantitative outcomes on 3D-FRONT [19]
and Pix3D [69] datasets documented by Liu et al. [41] in
the original paper. The “NC” (normal consistency) columns
in these tables are empty, as Liu et al. [41] did not measure
normal consistency in their paper. Tabs. S2 and S4 present
our reproduced results, which are comparable with the re-
sults in Tabs. S1 and S3. We additionally provide more qual-
itative results, Fig. S3 on 3D-FRONT and Fig. S4 on Pix3D.
As can be seen from these figures, our model can learn finer
and smoother surfaces with high-fidelity textures.

S3.2.2 Failure cases

In this section, we present and diagnose some representa-
tive failure examples. Fig. S1(a) illustrates that occlusion
between objects can lead to distortions in both shape and ap-
pearance recovery, particularly in the occluded areas. Prior
work [34, 43] necessitates unoccluded object images as in-

Table S1. Object reconstruction on the 3D-FRONT [19]
dataset. Our model achieves the best performance on mean CD
and F-Score, as well as the best NC on all object categories, out-
performing MGN [54], LIEN [87], and InstPIFu [41].

Category bed chair sofa table desk nightstand cabinet bookshelf mean

CD Ó

MGN 15.48 11.67 8.72 20.90 17.59 17.11 13.13 10.21 14.07
LIEN 16.81 41.40 9.51 35.65 26.63 16.78 7.44 11.70 28.52

InstPIFu 18.17 14.06 7.66 23.25 33.33 11.73 6.04 8.03 14.46
Ours 4.96 10.52 4.53 16.12 25.86 17.90 6.79 3.89 10.45

F-Score Ò

MGN 46.81 57.49 64.61 49.80 46.82 47.91 54.18 54.55 55.64
LIEN 44.28 31.61 61.40 43.22 37.04 50.76 69.21 55.33 45.63

InstPIFu 47.85 59.08 67.60 56.43 48.49 57.14 73.32 66.13 61.32
Ours 76.34 69.17 80.06 67.29 47.12 58.48 70.45 85.93 71.36

NC Ò

MGN - - - - - - - - -
LIEN - - - - - - - - -

InstPIFu - - - - - - - - -
Ours 0.896 0.833 0.894 0.838 0.764 0.897 0.856 0.862 0.854



put to avoid this problem. One of the future directions is
to involve the accurate reconstruction of object shapes with
textures under heavy occlusions. The bookshelf depicted in
Fig. S1(b) exemplifies the challenges our framework en-
counters when attempting to reconstruct intricate geometry.
We hypothesize that this can be attributed to the limited rep-
resentation power of SDF as the implicit surface represen-
tations for thin surfaces. Specifically, it requires the model
to recognize and reconstruct abrupt changes in the signed
distance field within centimeters, transitioning from posi-
tive (outside) to negative (inside) and then back to positive
again. To address such issues, we suggest future endeav-
ors in integrating unsigned distance field [22, 44] with vol-
ume rendering to capture such intricate geometry and non-
watertight meshes.

(a)

(b)
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Figure S1. Qualitative examples for failure cases. Two represen-
tatives with (a) occlusions and (b) intricate geometry.

S3.2.3 Comparison with prior-guided models

We randomly select 100 samples from the test split in
3D-FRONT to perform a comparative assessment of the
reconstruction performance between our framework and
prior-guided models, i.e., Zero-1-to-3 [43] and Shap¨E [34].
In the original paper, Zero-1-to-3 [43] utilized SJC [73]
for the 3D reconstruction task, whereas we follow Tang et
al. [70] to employ DreamFusion [62] to achieve enhanced
results. In Shap¨E [34], the text prompts are required for
reconstruction using the conditional generative model. We
utilize the ground-truth object category as the designated

Table S2. Reproduced results on the 3D-FRONT [19] dataset.
:: Results reproduced from the official repository.

Category bed chair sofa table desk nightstand cabinet bookshelf mean

CD Ó

MGN: 5.95 14.31 6.01 24.21 38.07 20.27 12.49 11.42 14.97
LIEN: 4.58 11.85 7.21 30.40 42.52 20.84 14.81 18.13 16.33

InstPIFu: 7.68 13.79 6.78 21.56 31.32 13.14 5.94 13.79 13.63
Ours 4.96 10.52 4.53 16.12 25.86 17.90 6.79 3.89 10.45

F-Score Ò

MGN: 65.47 52.83 68.98 54.04 42.9 45.01 52.01 55.26 57.19
LIEN: 72.16 62.23 68.25 48.18 32.07 42.87 49.62 43.12 58.37

InstPIFu: 62.28 66.31 69.65 58.73 40.49 57.52 76.59 71.48 65.34
Ours 76.34 69.17 80.06 67.29 47.12 58.48 70.45 85.93 71.36

NC Ò

MGN: 0.829 0.758 0.819 0.785 0.711 0.833 0.802 0.719 0.787
LIEN: 0.822 0.793 0.803 0.755 0.701 0.814 0.801 0.747 0.786

InstPIFu: 0.799 0.782 0.846 0.804 0.708 0.844 0.841 0.790 0.810
Ours 0.896 0.833 0.894 0.838 0.764 0.897 0.856 0.862 0.854

Table S3. Object Reconstruction on the Pix3D [69] dataset. On
the non-overlapped split [41], our model outperforms the state-of-
the-art methods by significant margins.

Category bed bookcase chair desk sofa table tool wardrobe misc mean

CD Ó

MGN 22.91 33.61 56.47 33.95 9.27 81.19 94.70 10.43 137.50 44.32
LIEN 11.18 29.61 40.01 65.36 10.54 146.13 29.63 4.88 144.06 51.31

InstPIFu 10.90 7.55 32.44 22.09 8.13 45.82 10.29 1.29 47.31 24.65
Ours 6.31 7.21 26.23 28.63 5.68 43.87 8.29 2.07 35.03 21.79

F-Score Ò

MGN 34.69 28.42 35.67 65.36 51.15 17.05 57.16 52.04 10.41 36.20
LIEN 37.13 15.51 25.70 26.01 49.71 21.16 5.85 59.46 11.04 31.45

InstPIFu 54.99 62.26 35.30 47.30 56.54 37.51 64.24 94.62 27.03 45.62
Ours 68.78 66.69 55.18 42.49 71.22 51.93 65.38 91.84 46.92 59.71

NC Ò

MGN - - - - - - - - - -
LIEN - - - - - - - - - -

InstPIFu - - - - - - - - - -
Ours 0.825 0.689 0.693 0.776 0.866 0.835 0.645 0.960 0.599 0.778

Table S4. Reproduced results on the Pix3D [69] dataset. :: Re-
sults reproduced from the official repository.

Category bed bookcase chair desk sofa table tool wardrobe misc mean

CD Ó

MGN: 11.73 17.50 36.74 29.63 7.02 47.85 25.63 6.61 62.32 27.9
LIEN: 16.31 26.05 33.06 39.84 7.34 76.97 27.84 4.66 126.88 33.66

InstPIFu: 9.82 7.73 31.55 23.18 7.28 45.89 9.64 1.79 43.4 24.35
Ours 6.31 7.21 26.23 28.63 5.68 43.87 8.29 2.07 35.03 21.79

F-Score Ò

MGN: 51.51 40.85 49.42 44.06 59.48 45.02 45.52 64.76 26.23 50.55
LIEN: 50.20 36.26 48.41 32.55 64.98 29.97 38.72 76.03 18.29 47.87

InstPIFu: 57.02 61.45 38.06 45.98 62.76 37.26 63.50 93.94 40.14 48.09
Ours 68.78 66.69 55.18 42.49 71.22 51.93 65.38 91.84 46.92 59.71

NC Ò

MGN: 0.737 0.592 0.525 0.633 0.756 0.794 0.531 0.809 0.563 0.659
LIEN: 0.706 0.514 0.591 0.581 0.775 0.619 0.506 0.844 0.481 0.646

InstPIFu: 0.782 0.646 0.547 0.758 0.753 0.796 0.639 0.951 0.580 0.683
Ours 0.825 0.689 0.693 0.776 0.866 0.835 0.645 0.960 0.599 0.778

text prompt to maintain fairness. It is noteworthy that both
Zero-1-to-3 [43] and Shap¨E [34] necessitate background-
free input images for the target objects. Consequently, we
utilize the ground truth mask to segment the object as input.
For our model, we use the original image as input.

S3.3. Rendering capability

S3.3.1 Novel view synthesis

To measure the capability for novel view synthesis, we
compare our model with PixelNeRF [83] on the category-
agnostic model, which is first trained on the ShapeNet [7]
and then fine-tuned using the 3D-FRONT [19]. Results in
Fig. 7 show that PixelNeRF struggles to render images out-
side the vicinity of the original viewpoints where our model
is capable of generating meaningful renderings from novel
views. The main reason behind this is that our method em-
ploys 3D supervision, which helps the model learn better
3D object priors. PixelNeRF fails to acquire a meaningful
3D prior from the training data, especially when each image
exists independently in 3D-FRONT [19], which is in stark
contrast to the ShapeNet [7] where images are presented in
a sequence of related perspectives. Fig. S5 shows that our
model not only generates high-quality new perspective im-
ages but also produces reasonable depth and normal maps
by volume rendering.
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Figure S2. Qualitative results for depth and normal estimation.
Our method produces results comparable with [17, 86] on the input
view, and can estimate depth and normal for novel views.

Table S5. Novel views depth and normal estimation. We evalu-
ate depth using L1 Ó and normal using L1Ó / Angular˝

Ó error.

Angle Method Depth(L1Ó) Normal(L1Ó / Angular˝
Ó)

0˝

XTC [86] 1.188 12.712 / 14.309
Omnidata [17] 0.734 10.015 / 11.257

Ours 0.992 10.962 / 12.392

5˝

Ours

1.0313 11.2132 / 12.631
10˝ 1.0911 11.5866 / 13.1078
15˝ 1.1796 12.0943 / 13.7095
20˝ 1.2624 12.6315 / 14.2108
30˝ 1.3934 13.4501 / 15.1012
40˝ 1.4694 15.0034 / 16.6108

S3.3.2 Depth and normal estimation

Our framework can serve as a proficient single-view depth
and normal estimator, and to compare with zero-shot
state-of-the-art methods [17, 86], we randomly select 200
samples from the test split in 3D-FRONT. To assess our
model’s capability to generate depth and normal maps from

novel views, we rotated the camera vertically left and right
by 5˝, 10˝, 15˝, 20˝, 30˝, and 40˝. It is worth noting that
only our method possesses the capability to estimate depth
and normal from novel views. Tab. S5 and Fig. S2 show that
our model can consistently produce satisfactory outcomes,
even when the viewing angle changes significantly.
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Figure S3. More qualitative results from 3D-FRONT [41].
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Figure S4. More qualitative results from Pix3D [69].
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Figure S5. More qualitative results for novel views synthesis.




