OCTOBER 1 - 5, 2023

IEEE/RSJ International Conference

Introduction

- Reconstructing surroundings is critical for robots, enabling them to understand and interact with their environments.
- While existing methods replace the objects with pre-built CAD models, our work introduces a part-level reconstruction approach that:
- Captures scene geometric details using primitive shapes.
- Estimates scene kinematics for robot interactions.

2023

(c) Scene reconstruction with part-level CAD replacement (ours)

Qualitative comparisons of reconstructed interactive

Part-level Scene Reconstruction Affords Robot Interaction Zeyu Zhang^{1,2*}, Lexing Zhang^{1,3*}, Zaijin Wang¹, Ziyuan Jiao^{1,2}, Muzhi Han^{1,2}, Yixin Zhu⁴, Song-Chun Zhu^{1,3,4}, Hangxin Liu^{1†}

¹National Key Laboratory of General Artificial Intelligence, Beijing Institute for General Artificial Intelligence (BIGAI). ²Center for Vision, Cognition, Learning, and Autonomy, UCLA. ³School of Intelligence Science and Technology, Peking University. ⁴Institute for Artificial Intelligence, Peking University. *Equal contributions +Corresponding Author

Framework Overview System architecture (c) part-based CAD alignment (d) contact graph ()scene $\mathbf{O}v^{s}\mathbf{O}v^{o}\mathbf{O}v^{p}$ microwave ----> revolute & part relations _____ IoU: 0.8673 IoU: 0.9246 IoU: 0.8485 IoU: 0.7963 IoU: 0.6181 IoU: 0.5890 (e) interactive scene with parts

(a) Complete and segment the noisy object point clouds, resulting in (b) a part-based panoptic map. (c) Each completed part is replaced with the most aligned primitive shape. The optimal combination of part alignments, is selected to (d) estimate the kinematic structure (connectivity) among the parts. The kinematic parameters are then obtained by template matching. (e) The replaced object parts and their relations are compiled into a **URDF** representation and can be imported into various simulators for TAMP tasks.

Individual part alignment $d_P(T_i \circ u)$

 $M^*, T^*_{ind} = \min_{\substack{M_i \in \mathcal{M}^c \ T_i \in SE(3)}} \frac{\min}{|h(M_i)|}$

	Quar
	CAD replacemen
dist.	object-leve
0	part-level
loU	object-leve
	part-level
	CAD
	replacement
dist.	object-level
	part-level
loU	object-level
	part-level
• Ou • Ma tha	Ir part-bas ore powerf e effect of
Qu	lantitati
4	3
(b)	
	one e differe
L	

undesired articulation.

Evaluation

ntitative results on geometric similarity

	input	SceneNN seq. ID							
nt	format	011	030	061	078	086	096	223	
el	original completed annotation	0.189 0.329 -	$\begin{array}{c} 0.759 \\ 0.378 \\ - \end{array}$	$0.431 \\ 0.483 \\ -$	$0.634 \\ 0.413 \\ -$	$0.588 \\ 0.601 \\ -$	0.508 0.329 -	0.462 0.619 -	
	completed annotation	0.205 -	0.207	0.310 -	0.187 -	0.210	0.177 -	0.169 -	
el	original completed annotation	0.109 0.030 -	0.034 0.034 -	0.063 0.087 -	0.028 0.033 -	0.042 0.016 -	0.047 0.052 -	0.021 0.040 -	
	completed annotation	0.125	0.118 -	0.215	0.157	0.156	0.134 -	0.113 -	

input	ScanNet seq. ID							
format	0002	0003	0092	0157	0215	0335	0560	0640
original completed annotation	$\begin{array}{c} 0.573 \\ 0.580 \\ 0.416 \end{array}$	$\begin{array}{c} 0.776 \\ 0.710 \\ 0.590 \end{array}$	$\begin{array}{c} 0.392 \\ 0.321 \\ 0.282 \end{array}$	$\begin{array}{c} 0.559 \\ 0.554 \\ 0.321 \end{array}$	$\begin{array}{c} 0.379 \\ 0.256 \\ 0.143 \end{array}$	$\begin{array}{c} 0.604 \\ 0.663 \\ 0.519 \end{array}$	$\begin{array}{c} 0.329 \\ 0.307 \\ 0.322 \end{array}$	$\begin{array}{c} 0.752 \\ 0.651 \\ 0.554 \end{array}$
completed annotation	0.202 <u>0.101</u>	0.163 <u>0.119</u>	0.216 <u>0.092</u>	0.239 <u>0.087</u>	0.192 <u>0.076</u>	0.174 <u>0.086</u>	0.190 <u>0.098</u>	0.183 <u>0.089</u>
original completed annotation	$\begin{array}{c} 0.021 \\ 0.014 \\ 0.056 \end{array}$	$\begin{array}{c} 0.013 \\ 0.076 \\ 0.100 \end{array}$	$\begin{array}{c} 0.034 \\ 0.128 \\ 0.116 \end{array}$	$\begin{array}{c} 0.028 \\ 0.027 \\ 0.170 \end{array}$	$\begin{array}{c} 0.033 \\ 0.065 \\ 0.196 \end{array}$	$\begin{array}{c} 0.021 \\ 0.017 \\ 0.067 \end{array}$	$\begin{array}{c} 0.101 \\ 0.057 \\ 0.133 \end{array}$	$\begin{array}{c} 0.012 \\ 0.018 \\ 0.119 \end{array}$
completed annotation	0.191 <u>0.383</u>	0.224 <u>0.540</u>	0.131 <u>0.478</u>	0.089 <u>0.665</u>	0.192 <u>0.361</u>	0.179 <u>0.548</u>	0.159 <u>0.467</u>	0.190 <u>0.614</u>

sed method outperforms the baseline.

ful 3D detection/completion models can further enhance scene reconstruction methods.

ve results on kinematic structure estimation

- Metric: mean average precision (mAP) Measure the alignment between the human-annotated kinematic structure
- and the estimated structure based on contact relations undirected the between parts.

Category	chair	table	microwave	cabinet	bed
mAP	0.9247	0.8292	0.9741	0.9592	0.9785

 Our method successfully estimates the kinematic structures of 5 object categories with mAP values close to 1.0.

(a) Different kinematic trees represent the parts of a table. (b) One error in kinematic structure estimation results in