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Abstract
The physical behavior of moving fluids is highly complex, yet people regularly
interact with them with relative ease. To investigate how humans achieve this
remarkable feat, we extended the classical water-pouring problem [1] to examine
how humans consider physical properties of fluids (e.g., viscosity) and perceptual
variables (e.g., volume) in a reasoning task. We found that humans do not rely
on simple qualitative heuristics to reason about fluid dynamics. Computational
results from a probabilistic simulation model can account for human sensitivity
to hidden attributes and their performance on the water-pouring task. In contrast,
non-simulation models based on statistical learning fail to fit human performance.
The results in the present paper provide converging evidence supporting mental
simulation in physical reasoning.

1 Introduction
Humans perceive and interact with many types of objects and substances on a daily basis; e.g.,
we regularly reason about fluid movement to predict when a filled container will spill. However,
people perform significantly worse when asked to make explicit reasoning judgments in similar
situations [1, 2]. Schwartz and Black [1] constructed a task requiring participants to choose which of
two water-filled containers (one wider than the other) would need to be tilted farther before beginning
to spill. Although participants failed the task in pencil-and-paper format, nearly all (95% of) the
participants rotated a thinner, imaginary container (or a real, empty one) farther.

The noisy Newton framework for physical reasoning hypothesizes that inferences about dynamical
systems can be generated by combining noisy perceptual inputs with the principles of classical (i.e.,
Newtonian) mechanics, given prior beliefs about represented variables [3–8]. In this framework,
physical states are propagated forward in time using an intuitive physics engine given noisy perceptual
inputs. The resulting predictions are queried and aggregated across simulations to determine the
probability distribution of the associated human judgment. Bates et al. [3] extended the framework
from physical scene understanding [4] to fluid dynamics using an intuitive fluid engine (IFE). Their
particle-based IFE model using smoothed particle hydrodynamics (SPH; [9]) matched human judg-
ments about final fluid states and provided a better quantitative fit than alternative models that did
not employ simulation or account for physical uncertainty. The present study examined whether a
particle-based IFE model can account for human judgments about the relative pour angle of two
fluid-filled containers. The experiment reported here was inspired by previous empirical findings
in water-pouring tasks (e.g., participants tilt containers filled with imagined molasses farther than
those with an equal volume of water) indicating that people are able to take hidden attributes such as
viscosity into account when making fluid-related judgments [1].

2 Experiment
2.1 Participants
A total of 152 participants were recruited from the Department of Psychology subject pool at the
University of California, Los Angeles, and were compensated with course credit.
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Figure 1: Flow demonstration illustration (left, top), judgment trial (left, bottom) and FLIP/APIC
model predictions with perceptual noise (right). Separate lines indicate model predictions for each
volume pair. Symbols indicate human response proportions.

2.2 Materials and procedure

Prior to the reasoning task, participants viewed animated demonstrations of a moderately viscous
fluid’s movement in two situations: (1) pouring over two torus-shaped obstructions and (2) spilling
from a rotating container (ω = 22 ◦/sec). The flow demonstration videos were presented to provide
visual motion cues to inform participants’ perceived viscosity [10]. Following the demonstration
videos, two new fluids were introduced: one with low viscosity (LV ; similar to water) and one with
high viscosity (HV ; similar to syrup). Participants viewed a side-by-side pouring video of both the
HV and LV fluids before each judgment trial (see left panel of Fig. 1).

In the subsequent reasoning task, participants viewed a static image of two containers filled with
the LV and HV fluids (see left panel of Fig. 1). Participants were instructed to assume that each
container was tilted simultaneously at the same rate as observed earlier for the moderately viscous
fluid in the demonstration. Participants were then asked to report “which container will need to
be tilted with a larger angle before the fluid inside begins to pour out" and received no feedback
following completion of each trial. The experiment manipulated the volume of the LV and HV
fluids (VLV and VHV , respectively) in each container across the values 20%, 40%, 60%, and 80%,
representing the proportion of the container filled. Hence, the experiment consisted of 16 trials
(reflecting all possible volume pairs) presented in a randomized order.

2.3 Human results

The symbols in Fig. 1 indicate human performance for all 16 fluid volume combinations. We
examined whether humans rely on two candidate heuristics to make their judgments: (1) the container
with less fluid will pour last (lesser-volume heuristic) and (2) the HV fluid container will pour
last (viscosity heuristic). For trials where VHV = 40%, 60%, and 80% and VLV = 20%, 40%,
and 60% (VLV < VHV ), the lesser-volume heuristic predicts LV fluid responses. However, HV
response proportions for those trials were significantly greater thane zero (t(151) = 9.92, 8.86, 8.10,
p < .001). Alternatively, the viscosity heuristic predicts unity HV response proportions for the
specified trials, which also disagrees with human response proportions. Thus, participants attended to
latent fluid attributes (e.g., viscosity) and volume difference without employing a simple heuristic
rule on either dimension when making their tilt angle judgments.

3 Models

3.1 Fluid simulation with physical dynamics

The velocity field of simulated fluids is determined using the Navier-Stokes equations. To numerically
solve these partial differential equations, we adopt the Fluid Implicit Particle/Affine Particle in
Cell (FLIP/APIC) method [11–13]. Unlike SPH, the FLIP/APIC method solves the Navier-Stokes
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Figure 2: Comparison of results between our three prediction models: (Left) BAM, (Middle)
Regression, and (Right) SVM with perceptual noise. Horizontal axes denote HV fluid volume;
vertical axes denote the predicted proportion of HV fluid responses.

equations on a background Eulerian grid and maintains the benefits of particle-based methods due
to its hybrid particle/grid nature. The presence of particles in the current model serves to facilitate
visualization (important for flow demonstration animations) and the tracking of material properties.
Since the FLIP/APIC method does not involve any stochastic processes, the output of each simulation
is deterministic.

3.2 Intuitive fluid engine

The decisions directly derived from the deterministic FLIP/APIC fluid simulator given ground-truth
parameters are binary judgments and thus cannot explain humans’ probabilistic judgments. Inspired
by the approach of Bates et al. [3] and the noisy Newton hypothesis [7], we combine the physical
simulator of FLIP/APIC with noisy input variables to form the Intuitive Fluid Engine (IFE) model.
Noisy volume is generated by adding an offset to its ground-truth value from a Gaussian distribution,
whereas noisy viscosity is generated by adding a fixed amount of Gaussian noise on a logarithmic
scale [7]. Each sample is then passed to the FLIP/APIC simulator to produce a binary decision; i.e.,
LV or HV fluid response. The IFE outputs the response distribution by aggregating the predictions
and dividing the sum by the number of samples. Response proportions for the FLIP/APIC model are
indicated in the right panel of Fig. 1.

We also compared human response proportions to a second simulation model which approximated the
fluid as a set of rigid balls (see left panel of Fig. 2). In the ball approximation model (BAM), viscosity
was approximated by damping the angular acceleration, αB , of each ball with magnitude proportional
to its angular velocity, ωB , weighted by a stiffness parameter, s. Similar to noisy viscosity, noisy
stiffness was generated by offsetting the median value with Gaussian noise on a logarithmic scale.

3.3 Non-simulation models

To examine whether simulation is necessary to account for how humans reason about fluid behavior,
we compare the simulation model with two statistical learning methods—the generalized linear model
(GLM) [14] and the support vector machine (SVM) [15] with perceptual noise. These models are
purely data-driven and do not involve any explicit knowledge of physical laws. The selected features
for these models include (i) the volumes of fluids in both containers, and (ii) the viscosity ratio
between the LV and HV fluids.

3.4 Modeling results

We first compared how well different computational models account for human performance for
the 16 trials. The right panel of Fig. 1 depicts results from the FLIP/APIC model and Fig. 2
depicts results from the BAM, GLM, and SVM models with perceptual noise. Human judgments and
model predictions were highly correlated (r(14) = 0.9954, 0.9663, 0.9488, and 0.9251, respectively).
Compared to the purely data-driven models (i.e., the GLM and SVM models), the simulation-based
IFE and ball approximation models provide better approximations to human judgments in the viscous
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fluid-pouring task. These results support the role of simulation as a potential mental model that
supports human inference in physical reasoning tasks.

4 Discussion
Our results from the viscous fluid-pouring task agree with the findings of Bates et al. [3] in that (1) our
probabilistic, simulation-based IFE and ball approximation models outperformed two non-simulation
models (SVM and GLM) and (2) people naturally attend to latent attributes (e.g., viscosity) when
reasoning about fluid states. Participants’ performance in our reasoning task suggests representation
of physical quantities that extends beyond qualitative or symbolic understanding. While human results
are generally consistent with physics-based simulation models coupled with noisy input variables,
there remain discrepancies between model predictions and human judgments. Hence, future research
should aim to address whether humans simulate fluid movements using mental models that accord to
physical laws or emulate fluid dynamics by drawing on their everyday interactions with liquids across
diverse physical situations [16]. Moreover, the accuracy of our ball approximation model suggests
that people may simulate approximated representations of substances using principles of rigid body
mechanics rather than fluid dynamics.
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