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Abstract
The physical behavior of moving fluids is highly complex, yet
people are able to interact with them in their everyday lives
with relative ease. To investigate how humans achieve this
remarkable ability, the present study extended the classical
water-pouring problem (Schwartz & Black, 1999) to examine
how humans take into consideration physical properties of flu-
ids (e.g., viscosity) and perceptual variables (e.g., volume) in
a reasoning task. We found that humans do not rely on simple
qualitative heuristics to reason about fluid dynamics. Instead,
they rely on the perceived viscosity and fluid volume to make
quantitative judgments. Computational results from a prob-
abilistic simulation model can account for human sensitivity
to hidden attributes, such as viscosity, and their performance
on the water-pouring task. In contrast, non-simulation mod-
els based on statistical learning fail to fit human performance.
The results in the present paper provide converging evidence
supporting mental simulation in physical reasoning, in addi-
tion to developing a set of experimental conditions that rectify
the dissociation between explicit prediction and tacit judgment
through the use of mental simulation strategies.
Keywords: Intuitive physics; mental simulation; animation;
reasoning

Introduction
Imagine that you are preparing to pour pancake batter onto a
griddle. To pour the correct amount, you must decide where
to hold the container, at what angle, and for how long. We en-
counter similar situations frequently in our daily lives when
interacting with viscous fluids ranging from water to honey,
and with different volumes, contained in receptacles of vari-
ous shapes and sizes.

In the majority of these situations, we are able to reason
about fluid-related physical processes so as to implicitly pre-
dict how far a filled container can be tilted before the fluid
inside begins to spill over its rim. However, people per-
form significantly worse when asked to make explicit rea-
soning judgments in similar situations (McAfee & Proffitt,
1991; Schwartz & Black, 1999). In the well-known Piagetian
water level task (WLT; Rebelsky, 1964), participants receive
instructions to draw the water level at indicated locations on
the inside of tilted containers. Surprisingly, about 40% of
adults predict water levels that deviate from the horizontal by
5 degrees or more (e.g., McAfee & Proffitt, 1991). Schwartz
and Black (1999) modified the WLT to include two contain-
ers, one wider than the other. The investigators asked partic-
ipants to judge which container would need to be tilted far-
ther before the water inside begins to pour out. Only 34% of

the participants correctly reported that the thinner container
would need to be tilted farther than the wider one. How-
ever, when instructed to complete the task by closing their
eyes and imagining the same situation, nearly all (95% of)
the participants rotated a thinner, imaginary container (or a
real, empty one) farther. These findings suggest that peo-
ple are able to reason successfully about relative pour an-
gles by mentally simulating the tilting event. An apparent
contrast in human performance between an explicit reasoning
task and a simulated-doing task has also been found in peo-
ple’s inferences about the trajectories of falling objects (Krist,
Fieberg, & Wilkening, 1993; K. Smith, Battaglia, & Vul,
2013). Thus, empirical findings in the literature of physical
reasoning suggest that people employ both explicit knowl-
edge about physical rules and mental simulation when mak-
ing inferences (Hegarty, 2004).

The noisy Newton framework for physical reasoning hy-
pothesizes that inferences about dynamical systems can be
generated by combining noisy perceptual inputs with the
principles of classical (i.e., Newtonian) mechanics, given
prior beliefs about represented variables (Bates, Yildirim,
Tenenbaum, & Battaglia, 2015; Battaglia, Hamrick, & Tenen-
baum, 2013; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2015; Sanborn, 2014; Sanborn, Mansinghka, & Grif-
fiths, 2013; K. A. Smith & Vul, 2013). In this framework, the
locations, motions and physical attributes of objects are sam-
pled from noisy distributions and propagated forward in time
using an intuitive physics engine. The resulting predictions
are queried and averaged across simulations to determine the
probability of the associated human judgment. Bates et al.
(2015) extended the framework from physical scene under-
standing (e.g., Battaglia et al., 2013) to fluid dynamics using
an intuitive fluid engine (IFE), where future fluid states are ap-
proximated by probabilistic simulation via a Smoothed Par-
ticle Hydrodynamics (SPH) method (Monaghan, 1992). The
particle-based IFE model matched human judgments about
final fluid states and provided a better quantitative fit than al-
ternative models that did not employ simulation or account
for physical uncertainty.

The present study aims to determine whether a particle-
based IFE model coupled with noisy input variables can ac-
count for human judgments about the relative pour angle of
two containers filled with fluids differing in their volume and
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viscosity. The experiment reported here was inspired by pre-
vious empirical findings in water-pouring tasks; e.g., partic-
ipants tilt containers filled with imagined molasses farther
than those with an equal volume of water, suggesting that
people are able to take physical attributes such as viscosity
into account when making fluid-related judgments (Schwartz
& Black, 1999). Bates et al. (2015) also found that their par-
ticipants’ judgments were sensitive to latent attributes of the
fluid (e.g., stickiness and viscosity).

To quantify the extent that humans employ their perceived
viscosity of fluids in subsequent reasoning tasks, we utilized
a recent development in graphical fluid simulation (Bridson,
2008; Jiang, Schroeder, Selle, Teran, & Stomakhin, 2015) to
simulate the dynamic behavior of fluids in vivid animations.
Previous work has shown that realistic animations can facili-
tate representation of dynamic physical situations (Tversky,
Morrison, & Betrancourt, 2002). Furthermore, recent re-
search on human visual recognition indicates that latent at-
tributes of fluids (e.g., viscosity) are primarily perceived from
visual motion cues (Kawabe, Maruya, Fleming, & Nishida,
2015), so displaying realistic fluid movement is needed to
provide the input of key physical properties that enable men-
tal fluid simulations. The present study, which uses a modi-
fication of Schwartz and Black’s (1999) water-pouring prob-
lem coupled with advanced techniques in computer graph-
ics, aims to test the hypothesis that animated demonstrations
of flow behavior facilitate inference of latent fluid attributes,
which inform mental simulations and enhance performance
in subsequent reasoning tasks.

Experiment
Participants A total of 152 participants were recruited
from the Department of Psychology subject pool at the Uni-
versity of California, Los Angeles, and were compensated
with course credit.
Materials and Procedure Prior to the reasoning task, par-
ticipants viewed animated demonstrations of the movement
of a moderately viscous fluid in two situations. The fluid
used in the demonstrations was colored orange and was not
observed in the judgment task. In the first demonstration,
the fluid pours over two torus-shaped obstructions in a video
looped three times and lasting for 11.5 seconds. The flow
demonstration videos were presented to provide visual mo-
tion cues to inform participants’ perceived viscosity. Follow-
ing the flow demonstration, participants viewed a video of a
cylindrical container filled with the same orange fluid tilting
at a constant angular rate (ω = 22 deg ·s−1; see Fig. 1) from
the upright orientation of the container and moving towards
the horizontal. The video was looped three times for a dura-
tion of 14.7 seconds.

Following the demonstration videos, two new fluids were
introduced, one with low viscosity (LV ; similar to water) and
one with high viscosity (HV ; similar to molasses). The LV
and HV fluids were colored either red or green (counterbal-
anced across subjects). As shown in the top panel of Fig. 1,

Figure 1: Illustration of flow demonstration video and judg-
ment trial. (Top) Sample frames from the HV (red) and
LV (green) flow video. (Bottom) Tilt judgment trial, where
VHV = 40% and VLV = 60%.

participants viewed a flow video of both the HV and LV flu-
ids (looped three times) for a duration of 11.5 seconds before
each judgment trial1. The two flow videos were presented
side by side for comparison, and the relative position of each
fluid was counterbalanced across subjects. The LV and HV
fluids were selected to readily distinguish the two fluids based
on their perceived viscosities, which were inferred from vi-
sual motion cues in the flow videos (Kawabe et al., 2015).

In the subsequent reasoning task, participants viewed a
static image of two containers side by side filled with the LV
and HV fluids (see bottom panel of Fig. 1). Participants were
instructed to assume that each container was tilted simultane-
ously in the same way as observed earlier for the orange fluid
in the tilting demonstration. They were informed that both
containers were tilted at the same rate, and were provided
with the quantity of fluid in each container. Participants were
then asked to report “which container will need to be tilted
with a larger angle before the fluid inside begins to pour out”
and received no feedback following completion of each trial.
The experiment manipulated the volume of the LV and HV
fluids (VLV and VHV , respectively) in each container across the
values 20%, 40%, 60%, and 80%, representing the proportion
of the container filled. Hence, the experiment consisted of 16
trials presented in a randomized order, including all possible
volume pairs between the LV and HV fluids. The experiment
lasted approximately 10 minutes.

Human Results
Fig. 2 depicts human performance for all 16 fluid volume
combinations. To assess the relationship between HV fluid

1Tilting and pouring videos can be viewed online at the following
URLs: http://hydra.math.ucla.edu/~cffjiang/cogsci/ [...]
Tilting videos: [...] = tilt movies/
Flow videos: [...] = pour fluid to box varying viscosity/.
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Figure 2: Human HV response proportions for all experimen-
tal conditions. The volume of the HV fluid (VHV ) is plotted
on the horizontal axis, and separate lines indicate the four
possible volumes for the LV fluid (VLV ).

volume and human judgments, we performed a logistic re-
gression analysis and compared estimated coefficients for
each participant across LV fluid volume conditions. We found
that coefficients for each participant varied significantly be-
tween VLV conditions (F(3,149) = 113.89, p < .001). In the
highest LV fluid volume condition (VLV = 80%), VHV had a
minor impact on participants’ responses (β̄80 = .04,σβ80 =
.25) relative to the lowest LV fluid volume condition (VHV =
20%; β̄20 = .57,σβ20 = .43). These results demonstrate that
participants’ responses were increasingly sensitive to HV
fluid volume for the greater VLV conditions.

Next, we examined whether humans rely on heuristic-
based reasoning to make their judgments. One candidate
heuristic is that given two containers filled with different vol-
umes of each fluid, the container with lesser fluid volume
requires a greater rotation before beginning to pour. While
participants adhered to this rule for trials where VHV < VLV ,
their judgments for each of the VLV < VHV trials did not ac-
cord to the same heuristic. For example, in trials where VHV =
40%, 60%, and 80% and VLV = 20%, 40%, and 60%, respec-
tively, the lesser-volume heuristic predicts LV fluid responses.
However, HV response proportions for those trials were sig-
nificantly greater thane zero (t(151) = 9.92,8.86,8.10, p <
.001). A second heuristic is to always choose the HV fluid as
requiring a greater rotation since it moves slower than the LV
fluid. The above three cases also disagreed with this heuristic
since the rule would predict unity HV response proportions.
In summary, response proportions in the specified trials re-
veals that participants attended to latent fluid attributes (e.g.,
viscosity) and volume difference when making their tilt angle
judgments (see Fig. 3).

Models
Fluid Simulation with Physical Dynamics
The simulation of incompressible flows through numerical
evaluation of physical equations has become one of the most

significant topics in computer graphics and mechanical engi-
neering. The velocity field of simulated fluids is determined
according to the constraints specified in the Navier-Stokes
equations:

∂vvv
∂t

+ vvv ·∇vvv+
1
ρ

∇p = ggg+µ∇ ·∇vvv, (1)

∇ · vvv = 0, (2)

where vvv is the velocity, ρ is the density, p is the pressure, ggg
is the gravitational acceleration (approximately 9.8 m s−2),
and µ is the viscosity. Equation (1) is called the momentum
equation—it is simply Newton’s second law (i.e., F = ma)
applied to fluid dynamics. Equation (2) is the incompressibil-
ity constraint on fluid velocity, where the null divergence of
the velocity field corresponds to constant density within vol-
umetric regions. Most liquids need to satisfy this constraint
in order to maintain constant volume while moving.

To numerically solve these partial differential equations,
we adopt the Fluid Implicit Particle/Affine Particle in Cell
(FLIP/APIC) method (Zhu & Bridson, 2005; Jiang et al.,
2015; Jiang, 2015), which has become standard in physics-
based simulation calculations due to its accuracy, stability and
efficiency. Unlike Smoothed Particle Hydrodynamics (SPH),
which purely relies on particles to discretize the computa-
tional domain, FLIP/APIC uses both particles and a back-
ground Eulerian grid. The Navier-Stokes equations are solved
on the grid, allowing for accurate derivative calculations,
well-defined free surface and solid boundary conditions, and
accurate first-order approximation of physical reality. The
FLIP/APIC method also circumvents common artifacts of
SPH; e.g., underestimated density near free surfaces and
weakly compressible artifacts. In fact, the requirement for in-
compressibility is crucial in the fluid-pouring problem studied
in this paper. We choose not to use SPH because it does not
guarantee a divergence-free velocity field unless additional
computational components are included. FLIP/APIC, how-
ever, maintains the benefits of particle-based methods due to
its hybrid particle/grid nature. The presence of particles in the
current model serves to facilitate visualization and the track-
ing of material properties. Besides modeling fluid, the state-
of-the-art physics-based simulation methods have provided
realistic cues for modeling complex tool and tool-uses (Zhu,
Zhao, & Zhu, 2015), generic containers (Liang, Zhao, Zhu,
& Zhu, 2015) and soft human body (Zhu, Jiang, Zhao, Ter-
zopoulos, & Zhu, 2016).

Realistic visualization of simulated fluids is particularly
important for the flow demonstration animations displayed
before each trial in our viscous fluid-pouring task. To pro-
vide vivid impressions of the motion of the LV and HV flu-
ids, we adopt OpenVDB (Museth et al., 2013) and utilize the
latest particle fluid surfacing methods developed in the field
of computer graphics to reconstruct a smooth level set surface
from the simulated fluid particles based on their locations.

The favorable efficiency and precision of the FLIP/APIC
method allows for effortless generation of ground truth re-
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Figure 3: Simulation results from the FLIP/APIC model
(RMSD = 0.6747). Separate lines indicate model predic-
tions, given ground-truth volume/viscosity values for each
fluid. Symbols indicate human response proportions. The de-
terministic simulation method returns binary predictions and
does not provide probabilistic response proportion estimates.

sponses for our task, given that fluid viscosity and volume
are known. The particle locations and vessel tilt angles are
explicitly recorded at each time step as simulation outputs.
Since the FLIP/APIC method does not involve any stochastic
processes, the output of each simulation is deterministic. In
each simulation, 40,000 particles (with around 8 particles per
grid cell) were used to ensure both stability and convergence.

Intuitive Fluid Engine

Fluid simulation with physical dynamics provides determin-
istic fluid movements if the ground-truth values of viscosity
and volume are known. Hence, the decisions directly derived
from the FLIP/APIC fluid simulator are binary judgments
(Fig. 3), which implies that the physical simulation with high
precision cannot explain humans’ probabilistic judgment in
the fluid-pouring task. Inspired by the approach of Bates et
al. (2015) and the noisy Newton model (e.g., Sanborn et al.,
2013), we combine the physical simulator of FLIP/APIC with
noisy input variables (i.e., viscosity and volume) to form the
Intuitive Fluid Engine (IFE) model, thereby accounting for
physical uncertainty and the influence of viscosity and vol-
ume on our reasoning task.

The input variables for our IFE are the ground-truth val-
ues of volume and viscosity (VT ,µT ) for the two fluids in
each experimental trial. The sampling process of the IFE
then samples N = 10,000 noisy viscosity and volume pair
values {(Vi,µi), i = 1,2, · · · ,N} for each fluid. Each sample
(Vi,µi) of the 10000 generated noisy input variables is later
passed to the FLIP/APIC simulator to produce a binary de-
cision Bi(Vi,µi) ∈ {L,R}. The decision is that either the left
L or the right R container needs to be tilted with a larger an-
gle before the fluid inside begins to pour out. By aggregating
the prediction from all 10,000 samples and dividing the sum
by the number of samples, the IFE outputs the distribution

PPP(VT ,µT ) for the given ground-truth values of viscosity and
volume:

PPP(VT ,µT ) =


P(VT ,µT )L =

∑i H(Bi(Vi,µi),L)
N

P(VT ,µT )R =
∑i H(Bi(Vi,µi),R)

N
,

(3)

where H(Ψ,Θ) = 1 when Ψ = Θ, and it is 0 otherwise.
To model physical uncertainty, the sampling process of the

IFE model is implemented by adding perceptual noises to the
ground-truth values of the physical input variables (i.e., vis-
cosity and volume). Noisy volume is generated by adding
an offset to its ground-truth value from a Gaussian distribu-
tion with mean 0 and variance σµ, whereas the noisy viscosity
is generated by adding a fixed amount of Gaussian noise on a
logarithmic scale (Sanborn et al., 2013): Vi = f−1( f (VT )+ε),
where VT is the ground-truth value, f (VT ) = log(ω ·VT + k),
f−1 is the inverse of f , and ε ∼ Gaussian(0,σV ). The results
reported herein chooses σµ = 0.1, σV = 0.1, k = 1.5, ω = 1.

Each simulation required approximately 10 minutes to run
on a modern single-core CPU. In order to run a large number
of simulations during the sampling process, we discretized
the viscosity and volume spaces into finite sets. Specifi-
cally, the viscosities are discretized into 8 different cases
(0.1,1,10,100,200,500,1000,2000) and the volumes into 21
different cases (0% to 100% with a step-size 5%). We pre-
computed the simulation results for each discretized case, and
stored the results in a database. During the sampling pro-
cess, the sampled inputs are numerically rounded to the pre-
computed discretized cases, where the results can be imme-
diately retried from the database without re-computing.

Non-Simulation Models
To examine whether fluid simulation is necessary to account
for how humans reason about fluid behavior, we compare
the simulation model with two statistical learning methods—
the generalized linear model (GLM) (McCullagh, 1984) and
the support vector machine (SVM) (Cortes & Vapnik, 1995).
These models are purely data-driven and do not involve any
explicit knowledge of physical laws or physical simulation.
The selected features for these models include (i) the vol-
umes of fluids in both containers, and (ii) the viscosity ratio
between the LV and HV fluids.

To predict human judgment for the i⋆th trial Ji⋆ , both non-
simulation models were tested with the i⋆th trial, and trained
with the remaining 15 trials {Ji, i = 1,2, · · · ,16, i ̸= i⋆}. The
trained GLM model is directly applied to the test case to pre-
dict which container will need to be tilted to a larger angle
before the fluid inside begins to pour out. Since the SVM is
a discriminative classification method which can only predict
discretized labels (i.e., +1 indicating selection of the left con-
tainer and −1 indicating selection of the right container), we
introduced perceptual noise (the same method for the IFE) to
each test trial to model physical uncertainty. For each test
trial, a set with 10,000 samples was generated. The trained
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Figure 4: Comparison of results between our three prediction models: (Left) IFE, (Middle) Regression, and (Right) SVM with
perceptual noise. Horizontal axes denote HV fluid volume; vertical axes denote the predicted proportion of HV fluid responses
associated with a greater rotation angle. The IFE simulation model outperforms competing data-driven models.

SVM model is then applied to predict the labels (+1 or −1)
in each sample, which are then aggregated to form the proba-
bility distribution for each test trial.

Model Results

We first compared how well different computational mod-
els account for human performance for the 16 trials. Fig. 4
depicts results from the IFE, GLM, and SVM models with
perceptual noise. Human judgments and model predic-
tions were highly correlated (r(14) = 0.9954,0.9488, and
0.9251, respectively). RMSD (root-mean-squared deviation)
between human judgments and the models’ predictions are
0.0824,0.1269, and 0.1418, respectively. Compared to the
purely data-driven models (i.e., the GLM and SVM models),
the simulation-based IFE model encodes material properties
(e.g., viscosity) and perceptual features (e.g., volume) and
provides better approximations to human judgments in the
viscous fluid-pouring task. These results again support the
role of simulation as a potential mental model that supports
human inference in physical reasoning tasks.

Next, we examined whether the IFE model captures human
performance on the three trials where the heuristic rule out-
lined earlier provides incorrect predictions; i.e., those trials
where VHV = 40%, 60%, and 80% and VLV = 20%, 40%, and
60%, respectively. Here, the ground-truth model predicts that
the HV fluid will require a greater angle of rotation before
beginning to pour, while the heuristic rule discussed earlier
suggests the opposite. HV response proportions for these tri-
als were .39, .34, and .30, respectively, and the IFE model
returned consistent predictions of .43, .37, and .23. Alter-
natively, the GLM model predicted response proportions of
.49, .47, and .49, and the SVM model predicted response pro-
portions of .49, .49, and .51. Thus, our IFE model captured
human performance on the specified trials while competing
data-driven methods returned predictions biased toward the
ground-truth model and away from the lesser-volume heuris-
tic.

Discussion

Our results from the viscous fluid-pouring task agree with
the findings of Bates et al. (2015) in that our probabilis-
tic, simulation-based IFE model outperformed two non-
simulation models (SVM and GLM). Our behavioral experi-
ment also indicates that people naturally attend to latent at-
tributes (e.g., viscosity) when reasoning about fluid states
following observation of realistic flow demonstration anima-
tions. By extending our probabilistic IFE method to a rea-
soning task, we demonstrated that the noisy Newton frame-
work can account for human performance in a fluid-related
judgment task that traditionally precludes mental simulation
strategies.

While simulation has been demonstrated as the default
strategy in other mechanical reasoning tasks (Hegarty, 2004;
Clement, 1994), the participants in Schwartz and Black’s
(1999) experiments failed to spontaneously represent and
simulate physical properties relevant to the water-pouring
problem when making their judgments. It is important to
note, however, that the present task differs from the tradi-
tional water-pouring task in several ways: (i) fluid viscosity
and volume (rather than container diameter) varied across tri-
als, (ii) a cup-tilting demonstration was displayed to visualize
the rate of simulated rotation, and (iii) motion cues from flow
demonstrations informed the perception of latent fluid at-
tributes (e.g., viscosity). Comparison of our study to previous
water-pouring studies suggests that the dissociation between
explicit physical prediction and implicit judgment reported
in the intuitive physics literature could be resolved in some
situations by modifying task characteristics and instructions
in ways that motivate simulated representation. While our
viscous water-pouring problem indicates a set of simulation-
inducing task characteristics, further research should aim to
determine specific experimental factors that trigger simula-
tion strategies. Specifically, can the conditions employed in
the present task extend to classical rigid-body and fluid me-
chanics problems to resolve the discrepancy between people’s

1809



explicit predictions and tacit judgments, and if so, what ad-
ditional task characteristics serve to facilitate mental simula-
tion?

Classical research in artificial intelligence has traditionally
dismissed robust mental simulation as a strategy for physi-
cal reasoning due to its inherent complexity, often propos-
ing simplified qualitative models instead (De Kleer & Brown,
1984). While the computational fluid simulations employed
in the present study require extensive numerical evaluation
to make predictions about future fluid states, humans appear
to do so with precision and accuracy in comparatively small
amounts of time. Furthermore, their performance in our rea-
soning task suggests representation of physical quantities that
extends beyond qualitative process theory. While human re-
sults are generally consistent with physics-based simulation
models coupled with noisy input variables, there remain dis-
crepancies between model predictions and human judgments.
Hence, future research should aim to address whether humans
simulate fluid movements using mental models that accord to
physical laws or emulate fluid dynamics by drawing on their
everyday interactions with liquids across diverse physical sit-
uations (Grzeszczuk, Terzopoulos, & Hinton, 1998).
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