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Abstract— This paper presents a design that jointly provides
hand pose sensing, hand localization, and haptic feedback
to facilitate real-time stable grasps in Virtual Reality (VR).
The design is based on an easy-to-replicate glove-based system
that can reliably perform (i) a high-fidelity hand pose sensing
in real time through a network of 15 IMUs, and (ii) the
hand localization using a Vive Tracker. The supported physics-
based simulation in VR is capable of detecting collisions and
contact points for virtual object manipulation, which drives
the collision event to trigger the physical vibration motors
on the glove to signal the user, providing a better realism
inside virtual environments. A caging-based approach using
collision geometry is integrated to determine whether a grasp
is stable. In the experiment, we showcase successful grasps of
virtual objects with large geometry variations. Comparing to
the popular LeapMotion sensor, we demonstrate the proposed
glove-based design yields a higher success rate in various tasks
in VR. We hope such a glove-based system can simplify the
data collection of human manipulations with VR.

I. INTRODUCTION

Grasping is arguably one of the most critical interactions
inside VR environments. Serving as an effective means to
train and test subjects in various environments and events [1],
[2], [3], [4], [5], [6], [7], VR has been receiving increas-
ing interests in both industrial and academic applications.
In addition, researchers in Artificial Intelligence (AI) also
identify VR as a compelling platform to collect human data
for training AI agents or robots [8], [9], [10].

Some hardware setups (e.g., [11]) have been developed to
improve the user interactions inside virtual environments as
the user experience of virtual manipulations becomes more
and more crucial, demanding for higher fidelity solutions to
enhance such a virtual interaction experience. However, fine-
grained human grasp sensing in VR is still hindered by the
lagging development of a low-cost but high-fidelity solution.
We argue that a successful solution should address:

1) Reliable hand pose sensing. The commercial hand pose
sensing products (e.g., [12], [13]) for VR use vision-based
gesture recognition approaches. Although these products
are low-cost and can be easily set up, it is difficult to
have a stable grasp due to occlusions and sensor noises
(see Figure 1(a)). Additionally, the vision-based approach
usually mounts the sensor on the head-mounted display,
which makes it impossible to track the hand pose when
the hand is out of the field-of-view of the head-mounted
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Fig. 1: Grasp the same object in VR using (a) a LeapMotion sensor,
(b) an Oculus Touch controller, and (c) the proposed glove system.
The grasping in (a) is unstable, reflected by the motion blur, due
to the noisy vision-based hand pose sensing approach. While (b)
allows a stable grasp, the grasp is unnatural and not even contacts
the object, as the object simply attaches to the hand once the user
triggers the grasp event. The proposed design in (c) yields the most
stable and natural grasp among three. The red areas of the hand
model indicate the forces exerted during manipulations.

display. This paper presents a network of IMUs on a data
glove to overcome challenges of the hand pose sensing.

2) Real-time natural grasp. The virtual grasp has to be
stable in order to manipulate virtual objects properly.
The existing solution used by the Vive and Touch con-
troller is essentially an attachment-based approach; i.e.,
the virtual object will automatically attach to the virtual
controller/hand once the user triggers the grasp event
(see Figure 1(b)). Such a grasp has very limited realism,
providing unsatisfactory user experiences. The proposed
design introduces a caging-based grasp to balance the
realism of grasp and real-time performance.

3) Fine-grained haptic feedback. When manipulating
physical objects in daily life, we actively sense the contact
of the object on-the-fly and adjust the hand pose to
manipulate the physical object accordingly. Such vital
haptic feedback during the contact or collision is still
largely missing in the previous designs. Although some
commercial controllers (e.g., Vive or Touch controller)
provide vibration feedback, such feedback is very crude
as the entire controller will vibrate. The proposed de-
sign advances the haptic feedback to each finger (see
Figure 1(c)), enabling finer-level feedback.

In this paper, we propose a design that jointly addresses
these three challenges by combining a glove-based hardware
system and a caging-based grasp approach in VR. The
glove-based system offers the merit of a more accurate
hand pose sensing and hand localization; it also supports
the implementation of haptic feedback devices. In addition
to recovering the hand pose, a physics-based simulation is
adopted for collision detection between virtual hands and
objects. A real-time caging-based approach is integrated to
determine whether the grasp is stable inside VR.
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A. Related Work
There are three main streams of hardware setups for

hand pose sensing. Exoskeleton [14], [15] usually relies on
complex mechanical structures to sense hand pose and is able
to provide haptic feedback. It is, however, usually bulky for
natural hand motions and difficult to replicate. Pneumatic
glove designs are powerful in actuating hand motions, but it
requires a large and heavy control box to pump liquid/air
to the pneumatic actuators. This characteristic makes it
unsuitable for VR applications. The glove designs utilizing
Inertial sensors, mainly IMUs [16], [17], provide a more
elegant solution as its setup is usually light enough that
would afford natural movements. Efforts have also been
made to improve pose sensing accuracy using filtering [18]
and estimation algorithms (e.g., extended Kalman filter [19],
[20]). Note that the prior work can only refer the sensed hand
pose to a local frame; for instance, to palm or wrist frame. In
contrast, in the proposed design, we incorporate a network
of 15 IMUs (one for each phalange) for hand pose sensing
with a Vive Tracker to provide global hand positioning.

The current dominating method in the virtual grasp is the
symbolic grasp defined by [21]—the virtual object is attached
to the virtual hand when a grasp happens or is triggered.
Symbolic grasps can achieve real-time computation; how-
ever, it limits natural manipulations, and user experiences as
the poses of object attachment are pre-defined, causing finger
penetrations or non-contacting grasp. In order to facilitate
more accurate grasp, the collisions between the hand and
the object have been taken into account to determine a stable
grasp [22], [23]. Meanwhile, physics-based approaches (e.g.,
[24]) in grasp and manipulation of virtual objects can help
address the problem of the visual interpenetration of hand
and object models, but often requires sophisticated simula-
tions which have difficulties to run in real-time. A grasped
object usually would “stick” to the hand when releasing
the object, resulting in less satisfactory user experience. In
this paper, we propose a caging-based approach to address
the stable grasp issue that balances between the real-time
requirement and the natural interactions in VR.

There is a recent trend in providing hardware-based haptic
feedback to users in VR. Choi et al. [25] designs a motor and
braking system to constrain the grasp pose. Kim et al. [26]
provides tactile, pseudo-force, and vibrotactile feedback, but
only for the thumb. Choi et al. [27] simulates grasping
weight, and Jain et al. [28] introduces the Peltier module to
simulate temperature change. Although such work provides
very detailed rendering for a particular type of feedback,
these designs are complicated to be implemented to provide
generic haptic feedback or too complex to be compatible
with other hardware systems. We instead use a network of
vibration motors to provide haptic feedback in a fine-grained
scale (i.e., in each finger) to increase the realism in VR.

B. Contribution
This paper makes the following contributions:

1) We propose a design of a glove-based hardware system
that incorporates a network of IMUs for hand pose sens-

Fig. 2: Schematics of the system architecture. A Vive Tracker and
a network of IMUs provide comprehensive hand pose and location
in the VR simulator Unreal Engine 4 (UE4). When a stable grasp
is formed based on the contact geometry, the virtual object follows
the hand’s movement, and the vibration motors at the contact area
are triggered to provide the user with vibrational feedback.

ing, a Vive Tracker for hand localization, and a network of
vibration motors to provide vibrational haptic feedback.
A light-weight Raspberry Pi serves as the control unit of
the system that collects and transmits the data between
the physical glove and the virtual environment.

2) We introduce a real-time method to determine stable
grasps based on the collision geometry between the hand
and object during manipulations. The geometry center of
all the colliding parts of the hand is computed, and the
object pose follows the hand pose if the geometry center
is overlapping with any part of the object.

3) We provide a Data Logging system that records detailed
manipulative data involved during the hand-object inter-
action in addition to the hand pose afforded by the glove-
based system, such as object pose, contact points, etc..

C. Overview

The remaining of this paper is organized as follows. In
Section II, we introduce the proposed overall design and
hardware implementations of the prototype. The virtual grasp
algorithm is described in Section III. The performance of the
proposed design is evaluated and discussed in Section IV via
a series of experiments. We conclude our work in Section V.

II. SYSTEM ARCHITECTURE AND PROTOTYPING

This section presents the overall hardware system
schematic. A network of 15 IMUs following the design
of [16] is configured and deployed. Six vibration motors
are used to provide vibrational haptic feedback for each
finger. Each vibration motor would be triggered when the
corresponding finger collides with virtual objects. Hand
location is tracked by a Vive Tracker [29] with a Lighthouse.

A. Overall Design

Figure 2 shows the schematic of the integrated system.
The hardware includes a data glove and a processing unit.
The data glove supports a network of 15 IMUs for hand pose
sensing. The pose information is collected and processed by
a Raspberry Pi. With additional hand locations captured by
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Fig. 3: The prototype consists of a network of 15 IMUs, a network
of 6 vibration motors, and a Vive Tracker.

a Vive Tracker, the grasp pose and the hand movement are
reconstructed in the world coordinate system as a virtual
hand in VR. When a stable grasp is detected (see Section III),
the phalanges that collide with the virtual object would
trigger a network of 6 vibration motors, controlled by the
Raspberry Pi, to provide vibrational haptic feedback to users.

B. Hardware Implementation

Pose Sensing: The pose sensing module consists of 15
Bosch BNO055 9DoF IMUs and a pair of TCA9548A I2C
multiplexers. One IMU is mounted to the palm, 2 IMUs are
to the 2 phalanges of the thumb, and the rest of 12 IMUs
are to the 3 phalanges for each of the other four fingers.
The IMUs yield high-fidelity orientation in the form of a
quaternion for each phalanx of the hand through their built-
in proprietary sensor fusion algorithm.

A customized 6.35×6.35 mm2 breakout PCB is designed
to mount IMUs, making it easier to attach to the glove
fabric with minimum constraints to the user’s natural hand
motion. The IMUs are connected to the I2C bus interfaces
available on a single Raspberry Pi 2 Model B—acting as the
master controller of the system—through the multiplexers.
The layout for our pose-sensing pipeline is based on [16],
in which the experiments quantify the characteristics of such
an arrangement and the IMU performance.

Haptic Feedback: Visual information alone is often
insufficient to afford a natural and realistic hand-object
interaction in VR, requesting for additional haptic feedback.
Although a haptic device is itself a complex system, this
paper implements a network of shaftless vibration motors to
provide vibrational feedback at each finger, which will be
triggered when the phalanx collides with the virtual object.

The vibration motors used in the system is small (10×
2 mm2) and light-weight (0.8 gram), providing 14, 500
Rotation per Minute at 3V input voltage. The motors are
connected via a 74HC4051 analog multiplexer, which is
controlled by the Raspberry Pi’s GPIO. Once the hand forms
a stable grasp in the virtual environment, the vibration motors
located at the corresponding contact points are powered
up for a short duration. This feedback signals the user to
maintain current hand pose to keep a stable grasp in VR.

Hand Localization: Although the IMU-based hand
pose sensing solution can reconstruct the hand pose within

a local frame (e.g., the wrist frame), the hand location
relative to the global frame is still needed to recover a global
hand movement inside the VR. Localizing hand by vision-
based methods often require a skin-mask as the first step to
segment the hands from the background. Wearing data gloves
disallows such methods, requiring a hardware solution.

Naturally compatible with the VR, the Vive Trackers allow
precise localization in the environment using the HTC Light-
house, a laser sweeping device. Minimal two Lighthouses
is set up to emit lasers that sweep alternatively in vertical
and horizontal directions. The location and the orientation
of a Vive Tracker in the 3D space is calculated by the
time-difference-of-arrival of the laser impulse detected on
the photodiode inside the Vive Tracker.

In the proposed design, a Vive Tracker is attached to the
back of the palm. The position and orientation of the virtual
hand are computed using the Vive tracker and the IMU on
the glove’s palm, respectively.

Communication: A real-time ROS-UE4 bridge is built
to communicate between the Raspberry Pi mounted on the
glove and the UE4 engine running on a remote desktop.
Specifically, the local hand poses obtained from IMUs are
collected by the Raspberry Pi and wirelessly transmitted to
the UE4 simulator. The Vive Tracker that provides global
hand poses is also wirelessly connected to the UE4 environ-
ment. Using such information, the hand pose is reconstructed
in UE4. A caging-based algorithm detects the collisions
to determine whether a stable grasp occurs. The detected
collisions in UE4 will consequently trigger the vibration
motors wirelessly on the glove through the ROS-UE4 bridge.

C. Prototyping

Figure 3 shows a prototype of the proposed design. We
choose a compression glove, aiming to reduce the skin-
motion artifact. Each of the 15 IMUs is placed inside a 3D-
printed housing that is sewed into the fabric of the glove.
The physical connections from the IMUs to the multiplexer
use a high-flexibility, silicone-coated 29-gauge stranded-core
wire. Such a layout of the IMUs and the wire connection do
not interfere with hand motions.

A total of 6 vibration motors are attached to the surface
of the glove: one on the middle of the palm, one on the
distal phalanx of the thumb, and one on the middle phalanx
of each other finger. A Vive Tracker is placed on the back
of the palm to maximize its exposure to the Lighthouse.

III. VIRTUAL GRASP

In this section, we present the construction, calibration,
and grasp detection of the virtual hand to realize a stable
grasp in UE4, a popular VR environment.

A. Virtual Hand Construction

The human hand has approximately 22 degree-of-freedom
(DoF) regarding rotation (see Figure 4): 2 DoFs for metacar-
pophalangeal (MCP) joints, 1 DoF for proximal interpha-
langeal (PIP) joints, 1 DoF for distal interphalangeal (DIP)
joints, and 3 DoFs for the palm. With these constraints, the
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Fig. 4: The structure of the virtual hand model, in which every
phalanx is modeled as a small cylinder. The pose of each phalanx
can be computed using IMUs, and a Vive Tracker directly tracks
the pose of the palm.

thumb finger can be modeled as a 3 DoFs kinematic chain,
and each of the other four fingers can be modeled as a 4
DoFs kinematic chain, where the palm is the base of all the
fingers. The pose of each finger phalanx is determined by
the forward kinematic using homogeneous transformation

i−1
i H =

[
R T
0 1

]
,

where R is a 3×3 rotation matrix and T is a 3×1 translation
matrix w.r.t. the parent frame i−1 to the child frame i.

Let Ow denotes the origin of world coordinate system,
the Vive Tracker provides the rotation from world (w) to
palm (p) Rw,p, and the translation Tw,p to indicate the palm
coordinate within Ow. Each IMU produces a raw rotation
data in quaternion qi w.r.t. its local frame Oi. Using the index
finger as illustration, the IMUs placed on palm, proximal,
middle, and distal phalanx produce quaternion qp, q1, q2, and
q3, respectively. The corresponding rotations for the MCP,
PIP, and DIP joints are

RMCP = f(q1/qp), RPIP = f(q2/q1), RDIP = f(q3/q2),

where f(·) denotes the conversion function from a quaternion
to a rotation matrix, and / denotes the quaternion division.

Translation matrix T(·) is defined according to the dimen-
sion of the hand. Finger joints motion limits are adapted
based on the previous study [30].

B. Hand Calibration

Drifting is a common issue with the inertial sensors like
IMUs, which introduce accumulated errors in grasp sensing.
To eliminate the effect, we design a hand calibration routine,
during which the user wears the glove and holds the hand
flat in a canonical pose on a flat surface (see Figure 5).
The orientation of a single IMU is measured in the local
coordinate system, i.e., the glove frame. Once the calibration
event is triggered, the relative pose between the glove frame
and the world frame is recorded, and the hand poses obtained
later is multiplied by the inverse of the relative pose to cancel
out the differences.

C. Caging-based Stable Grasp in UE4

There are two main streams to realize a virtual grasp
inside VR; both have their advantages and disadvantages.
One stream is to simulate soft tissues of the hand and
the material of the virtual object using a physics-based
simulation with collision detection. This method provides
a very realistic manipulation but often requires significant
computing resources, making it difficult to run in real-time.

Stored 
Relative Pose

Real-Time 
IMU Data

Pose Alignment Corrected Pose
Fig. 5: Hand calibration using IMU data. Taking the index finger as
an example, the user first holds the finger flat, the same pose as the
index finger of the virtual hand model. Once the calibration event is
triggered, the relative pose between the virtual hand model and the
IMU coordinate system is recorded. The IMU data obtained later
is then corrected using the inverse of the recorded relative pose.

Conversely, another stream is the symbolic-based or rule-
based grasp. Using a set of pre-defined rules, a grasp or
a release is triggered once specific rules are satisfied. This
approach is usually straightforward to compute but provides
very limited user experiences in terms of realism.

In this paper, we seek to find a reasonable balance, i.e.,
to provide a more natural manipulation than the symbolic-
based approaches, but require less computational demands
than physics-based simulations. The proposed caging-based
stable grasp consists of the following four steps.

1) Starts with a full simulation for both virtual hands and all
the virtual objects so that the collision can be simulated
as realistically as possible.

2) Detect all parts of hands that are in collision with other
virtual objects (see red areas in Figure 6 (b)).

3) Compute the geometry center of all the collisions points
of the hand, and check whether the center is overlapped
with any virtual objects (see Figure 6 (a)). If there is
an overlapped object with the computed geometry center,
we consider this overlapped object is caged, i.e., grasped
in the virtual environment. The physics property of this
object is turned off so that the object will move together
with the hand. In this process, we guarantee that the grasp
only starts when a caging is formed, improving the user
experience of natural manipulations.

4) Release the grasped object when (i) the computed ge-
ometry center is no longer overlapped with the grasped
object, or (ii) the collision between the virtual hand and
the virtual object disappears.

(a) (b)
Fig. 6: Collision detection of a grasp. (a) Illustration of the collision
detection method. When the geometry center (green ball) of all the
collision points (red balls) is overlapped with an object (yellow
cylinder), the overlapped object will be grasped and attached to the
hand. (b) Examples of grasping small cylinders in various ways.
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Fig. 7: (a) Schematic of the experimental setup for evaluating the
angle reconstruction using two articulated IMUs. (b) An exemplary
setup of the physical device. (c) Performance of the angle recon-
struction. Box plot: red horizontal lines indicate the median error,
and the bottom and top edges of the blue boxes indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most
extreme data points that were not considered outliers. Blue strip:
the mean and standard deviation of the reconstructed angles using
articulated IMUs. Green strip: the mean errors reduce after applying
for least squared error compensation.

IV. EXPERIMENT

A. IMU Evaluation
The pose sensing building upon the performance of the

IMUs is critical to the fidelity of grasp and user experience in
the VR. We experiment to evaluate the accuracy in estimating
a joint angle using two adjacent IMUs and model the IMU’s
performance in terms of its bias and variance. In particular,
we manufacture four rigid bends with fixed angles of 0◦,
45◦, 90◦, and 135◦ to simulate a finger’s bending. The
experimental schematic is shown in Figure 7(a). Figure 7(b)
is an exemplary setup of the physical device using 90◦ joint
angle: two IMUs are placed 2cm away behind the bend and
1cm ahead of the bend, aiming to recover the joint angle of
the bend. This setup relies on two reasonable assumptions
for evaluations: finger joints are revolute, and IMUs are at
the same radii relative to joint.

Figure 7(c) shows the errors of estimated joint angles for
four settings with twenty repeated trails. The errors increase
from 4◦ to approximately 6◦ when the bending angles
increase from 0◦ to 135◦. We can also see that the articulated
IMUs under-perform as the bending angle increases, but the
error range reveals a consistent pattern, hinting at a possible
compensation for such error. We apply a least squared fit
y=0.0249x+3.9068, where y is the compensation amount,
and x is the current sensed angle. Such error compensation
procedure reduces the sensing error to about ±1 degree.

B. User Experience
We further demonstrate the performance of the proposed

design qualitatively by grasping a variety of objects with a
large variation of the geometry, including a mug, a tennis
racket, a bowl, and a goose toy; see Figure 8. These four
everyday objects are chosen for two reasons: (i) the four
objects are everyday objects in daily life with different
shapes and complexities, providing effective assessments
of the performance measure of the virtual grasp, and (ii)
these objects have different functions, requiring various grasp
types [31].

Additionally, we test different ways to interact and manip-
ulate virtual objects; e.g., we can pick up a mug not only

Fig. 8: Left to right: different grasps of a mug, a tennis racket, a
bowl, and a goose toy. Top of each column: approaching the target
object. Bottom of each column: release the target object.

by grasping the handle but also by grasping the rim. Such
diverse interactions and manipulations afford a natural inter-
action experience by integrating unconstrained fine-grained
gestures, difficult for other existing devices (e.g., Leap-
Motion) to achieve. With the proposed caging-based grasp
approach, the proposed glove-based device has achieved a
balanced trade-off between the natural interactions and the
stable grasp, providing a better realism in the virtual world
that is close to the manipulation in the physical world.

Note that one significant advantage of the proposed design
compared to the popular LeapMotion sensor setup is: the

TABLE I: Success rates of grasping and moving four different
objects. The proposed glove-based system (G) significantly surpass
the LeapMotion sensor (L) in both cases.

Objects Setup Grasp (%) Move (%)

Mug
L 80 33
G 100 100

Racket
L 13 7
G 100 93

Bowl
L 27 0
G 100 93

Toy
L 67 47
G 93 87
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Fig. 9: Various hand and object trajectories collected using the
proposed design in VR. Starting from the red triangles, the red
line indicates the hand movement, and the blue lines are the
trajectories of fingertips. After an object is grasped, determined by
the contact points (green circles), the object moves along with the
hand following the black lines and is released at the orange circles.

proposed design allows tracking the hand pose and main-
taining the grasp outside the user’s FoV. We compare the
performance of the proposed design with the LeapMotion
quantitatively in two settings: (i) grasp an object, and (ii)
move an object during which the hand would briefly be
outside of the FoV; Table I shows the success rates. The
deployed caging-based grasp significantly surpasses the per-
formance provided by the LeapMotion sensor in grasping
various objects. The success rate retains high and consistently
when moving objects using the proposed design, whereas the
success rate drops significantly using the LeapMotion sensor.

This experiment also indicates that the proposed design is
more robust in terms of the grasp types. According to the
grasp taxonomy presented in [31], grasping a mug from the
handle and a goose toy from the neck are classified as Power
Grip with thumb abducted, the racket as Cylindrical Grasp,
and the bowl from the rim as Extension Grip. Although the
LeapMotion sensor does reasonably well for Power Grip with
thumb abducted, it performs poorly in the other two types
of grasps. In contrast, the grasp using the proposed design
performs consistently across all types.

C. Data Logging

The glove-based system is capable of logging various
grasp-related data automatically, providing a unique ad-
vantage compared to traditional hardware. This subsection
demonstrates two types of data that can be collected effec-
tively through the proposed glove-based system.

Hand/Object Trajectory is a useful knowledge in the
field of robot Learning from Demonstration, which is usually
collected using visual tracking methods. The proposed Vive
Tracker and Lighthouse setup using the glove is a low cost
and off-the-shelf solution to provide a reliable hand tracking.
Diverse object models can be placed in the VR without to
prepare physical objects to ensure natural hand trajectory.
The quality of the recorded data is shown in Figure 9,
demonstrating the reliability of the proposed design.

Fig. 10: Results of the grasping task. (a) A list of objects used in
the study. (b)(c) Some examples of the grasp performed by different
human subjects. (d) The average grasp calculated from multiple
human subjects.

Grasping Points are extremely challenging to ob-
tain. Conventional solutions addressing this challenge use
computer-vision based method [32], which heavily rely on
training data and highly vulnerable to the occlusion between
hand and objects. By taking the intersection of the virtual
objects and the virtual hand, such data can be elegantly
logged using the proposed system. The grasp data shown in
Figure 10 contains meaningful information about how human
tend to grasp certain objects. This grasping data collected
could be used for different domains of research ranging from
studying human utilities [33] or robotics grasp planning [34].

V. CONCLUSION

This paper presents a design to enable a caging-based
natural grasp in the VR. The hardware design is based on
an easy-to-replicate glove that senses hand pose through a
network of 15 IMUs, localizes hand using a Vive Tracker,
and provides haptic feedback through 6 vibration motors. We
have demonstrated that the design captures fine-grained hand
motions. According to the collisions geometry between the
virtual hand and virtual objects, a caging-based approach
is integrated to determine a stable grasp. The experiment
exhibits the effectiveness of the proposed design in grasping
various objects, resulting in a significantly higher success
rate in grasping and moving objects in VR, compared to
the popular LeapMotion sensor. The data logging module
also enables the potential of using the proposed glove-based
system to collect ground truth grasp data during human
manipulations, such as hand trajectories and grasping points,
which may facilitate in AI and robotics related research.

Ongoing work includes enriching the forms of haptic feed-
back and acquiring large-scale grasp data of manipulating
various objects, which can be used for training virtual AI
agents for robot grasping tasks.
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