
Dr. Android and Mr. Hide: Fine-grained security policies on
unmodified Android

University of Maryland, Department of Computer Science Technical Report CS-TR-5006, December 9, 2011.

Jinseong Jeon
∗

jsjeon@cs.umd.edu
Kristopher K. Micinski

∗

micinski@cs.umd.edu
Jeffrey A. Vaughan

†

jeff@cs.ucla.edu

Nikhilesh Reddy
†

nreddy@cs.ucla.edu
Yixin Zhu

†

Jeffrey S. Foster
∗

jfoster@cs.umd.edu
Todd Millstein

†

todd@cs.ucla.edu

ABSTRACT
Google’s Android platform includes a permission model that
protects access to sensitive capabilities, such as Internet ac-
cess, GPS use, and telephony. We have found that Android’s
current permissions are often overly broad, providing apps
with more access than they truly require. This deviation
from least privilege increases the threat from vulnerabili-
ties and malware. To address this issue, we present a novel
system that can replace existing platform permissions with
finer-grained ones. A key property of our approach is that
it runs today, on stock Android devices, requiring no plat-
form modifications. Our solution is composed of two parts:
Mr. Hide, which runs in a separate process on a device and
provides access to sensitive data as a service; and Dr. An-
droid (Dalvik Rewriter for Android), a tool that transforms
existing Android apps to access sensitive resources via Mr.
Hide rather than directly through the system. Together, Dr.
Android and Mr. Hide can completely remove several of
an app’s existing permissions and replace them with finer-
grained ones, leveraging the platform to provide complete
mediation for protected resources. We evaluated our ideas
on several popular, free Android apps. We found that we can
replace many commonly used “dangerous” permissions with
finer-grained permissions. Moreover, apps transformed to
use these finer-grained permissions run largely as expected,
with reasonable performance overhead.

1. INTRODUCTION
Google’s Android is the most popular smartphone

platform, running on 52.5% of all smartphones [11], and
with more than 10 billion apps downloaded from the
Market [13]. Android takes an “open-publish” approach
to app distribution, in which any app can be installed
on any phone. To help address security concerns, An-

∗University of Maryland, College Park
†University of California, Los Angeles

droid protects access to sensitive resources—including
the Internet, GPS, and telephony—with permissions.
When an app is installed, the permissions it requests
are shown to the user, who then decides whether to
proceed with installation. No additional permissions
may be acquired when an app runs.

While Android permissions provide an important level
of security, the available permissions are often more
powerful than necessary. For example, the Amazon
shopping app must acquire full Internet permission, en-
abling the app to send and receive data from any site
on the Internet, not just www.amazon.com. In fact, this
permission allows apps to connect to local sockets on
the phone as well, which led to a recently publicized
security hole whereby any app with Internet permis-
sion could access detailed system logs on HTC Android
phones [1].

In this paper, we present a new system for replacing
coarse Android platform permissions with finer-grained
permissions that lower needed privilege levels, decreas-
ing the potential threat from vulnerabilities and mali-
cious apps. Our system is comprised of two novel parts.
First, we introduce Mr. Hide, an Android service that
protects sensitive device capabilities with fine-grained
permissions that the service dynamically enforces. For
example, Mr. Hide includes an API for accessing the
Internet but protects this API with a new permission
InternetURL(d), which only grants access to the Internet
domain d. The Amazon app mentioned above can use
Mr. Hide to access the Internet by replacing Android’s
full Internet permission with the much weaker Internet-
URL(www.amazon.com) permission, providing increased
confidence to both the developer and users.

A key feature of Mr. Hide is that it runs on stock
Android phones, requiring no platform modifications.
Mr. Hide leverages several existing features of Android.
First, it creates custom permissions for its various ser-

1

www.amazon.com

vices. Note that although Android does not directly
support parametrized permissions such as InternetURL(d),
we can use a simple encoding to represent them using
flat permissions names. Second, Mr. Hide runs in its
own process, so while must be trusted with standard,
full Android permissions, Android’s process separation
ensures that client apps only access the underlying re-
sources through Mr. Hide’s narrow API. Further, An-
droid’s existing permission framework ensures complete
mediation—if an app removes the standard Internet per-
mission, the app cannot directly access the Internet, ei-
ther via the standard Android APIs or via lower-level
mechanisms such as dynamic loading, reflection, and
native code. Finally, it is very easy to port clients to
Mr. Hide, since we provide an adapter layer that is a
drop-in replacement for sensitive platform APIs as well
as common third-party libraries like AdMob, an adver-
tising library; the adapter layer takes care of all neces-
sary communication with the Mr. Hide service.

Second, we describe Dr. Android (Dalvik Rewriter for
Android), a tool that retrofits existing Android appli-
cation package files (apks) to use Mr. Hide (the Hide
interface to the droid environment). In combination,
the two components allow users to obtain the secu-
rity benefits of finer-grained permissions on downloaded
apps, without needing source code or recompilation.
The input to Dr. Android is an apk and a list of finer-
grained permissions to retrofit. Surprisingly, a small
number of reusable high-level transformations suffice in
order to replace an existing Android permission with
a Mr. Hide permission. In particular, Dr. Android in-
cludes the ability to change the permission set of an
apk; rename platform API references in bytecode to re-
fer to their Mr. Hide counterparts; append the Mr. Hide
adapter layer to the code in the apk file; and insert code
to bind to the Mr. Hide service, among other, similar
transformations. Together, these transformations con-
stitute a simple but powerful API for retrofitting exist-
ing apks to use fine-grained permissions, and we expect
the same transformations can be used for new permis-
sions added to Mr. Hide in the future.

To evaluate our ideas, we studied the permissions
used in several of the most popular, free Android apps.
These apps use a wide range of permissions, so we se-
lected 7 of commonly used dangerous (as defined by the
Android platform) permissions requested by the apps.
We found that the requested Android permissions are
often much broader than necessary for the app’s desired
usage. Specifically, we identified a set of 7 finer-grained
permissions that, together, can completely replace 61%
of the uses of the original dangerous permissions we
studied and partially replace an additional 12% of them.
We have implemented our proposed permissions in Mr.
Hide and developed transformations for them in Dr. An-
droid. Each fine-grained permission can be used in at

least 3 of our apps, and the most common fine-grained
permission can be used in 12 of the apps.

We evaluated our implementation of Dr. Android and
Mr. Hide in several ways. First, we used microbench-
marking to measure the performance of the Mr. Hide
service and found overheads of 10–50% compared to di-
rectly using sensitive platform APIs, likely due to the
interprocess communication required to use Mr. Hide.
However, we found that in practical use—specifically, in
manual testing of the modified apps—perceived perfor-
mance under Dr. Android and Mr. Hide is the same as
for the original app. Next, we applied Dr. Android to
our apps, finding that it performs well, taking at most
around one minute to transform an app, and producing
code that passes the Dalvik bytecode verifier. Finally,
we evaluated the correctness of the transformed apps
using automated and manual testing. We found that
all automated tests passed, and we observed only a few
differences from the original apps under manual testing.
The differences we detected are due to limitations in Mr.
Hide’s support for the Android networking API and for
complex ads, and they are not fundamental. We expect
that even with these limitations as a research prototype,
many users would be willing to accept these differences
in exchange for increased security.

Dr. Android and Mr. Hide have several advantages
over prior approaches for Android [3, 16, 19, 15]. First,
our approach does not require any modification to the
current Android platform, and it can run on stock de-
vices without jailbreaking. Second, we can easily add
new fine-grained permissions over time, which we be-
lieve is essential; different applications and/or users will
have different privacy requirements, and it is unlikely
that a fixed vocabulary of permissions will suffice, espe-
cially given the rapid evolution of the Android platform.
Finally, a given fine-grained permission could have mul-
tiple independent associated services that enforce the
permission. We envision an ecosystem in which many
different parties provide services for commonly desired
fine-grained permissions, which developers and users
can choose among. Such services are far simpler than
full apps and hence are much easier to audit for security.

In summary, we believe our results show that Dr. An-
droid and Mr. Hide provide stronger privacy guarantees
for users while retaining application functionality and
performance.

2. MOTIVATING EXAMPLE
In this section we motivate our approach by illus-

trating how it can be used to improve the security and
privacy of a particular Android app. Consider installing
Horoscope (horoscope.fr) one of the most popular free
Android applications. The app allows users to check
the horoscope for different astrological symbols for to-
day, tomorrow, and the current week, month, and year.

2

horoscope.fr

Despite the simplicity of its intended functionality,
version 1.5.2 of the Horoscope app requests several per-
missions that are classified as dangerous by Android.
These include the ability to access the Internet; read
the phone state; access fine (GPS-based) and coarse
(network-based) location information; and write system
settings. These permissions allow the Horoscope app to
access a variety of kinds of sensitive information about
the user and to upload that information to any location
on the Internet. The permissions also allow the app to
violate integrity, for example by modifying some of the
phone’s settings.

We can use Dr. Android and Mr. Hide to enforce an
access-control policy for Horoscope that is much closer
to its least privilege policy:

• Horoscope requires Internet permission to access a
range of servers on the web. To reduce the scope of
this access, Mr. Hide provides the InternetURL(d)
permission described in the previous section. In
this case, we would give the app the permission
InternetURL(horoscope.fr) and similar permissions
for other domains needed for the app.

In addition its core functionality, Horoscope uses
Internet access to display ads from a range of ad
servers. Mr. Hide provides two more restrictive In-
ternet permissions, AdsPrivate and AdsGeo, to en-
sure that requests to one commonly used ad server,
AdMob, do not leak sensitive information. The
first permission permits only an advertiser id to
be sent to the server, and the second permission,
which we use for Horoscope, also allows the user’s
location to be sent in order to obtain targeted ads.

• Horoscope reads the phone state only to access a
unique phone ID that can be used to track how
clients use the app. Mr. Hide provides a UniqueID
permission and associated library for this common
case, which provides a (false) device ID and disal-
lows all other privileged state access.

• Horoscope uses location information for targeted
ads, as described earlier. In Mr. Hide, precise lo-
cations are currently provided for ads, but Mr.
Hide provides the ability to coarsen location in-
formation for other uses. In particular, users who
do not wish to provide detailed location informa-
tion can employ Mr. Hide’s LocationBlock permis-
sion, which provides location information (either
GPS- or network-based) that is only accurate up
to around 150 meters (about the distance of a city
block).

• Horoscope requests permission to write system set-
tings, but it is not clear why. In fact, we found that
the app does not call any APIs that require this
permission, and hence it is simply over-privileged.

With Dr. Android, a user can remove this permis-
sion.

While Horoscope is a particularly good illustration
of the problem with Android’s permissions, it is by no
means unique. As discussed in the next section, we
found many popular apps whose Android permissions
can be replaced with finer-grained permissions via Dr.
Android and Mr. Hide in order to improve security with-
out affecting functionality.

3. FINE-GRAINED PERMISSIONS FOR AN-
DROID

We examined 19 of the top free apps on the Android
Market to understand the potential benefits of fine-
grained permissions and to identify the most promising
such permissions to implement in Mr. Hide. The apps
represent a range of domains, including games, utilities,
online shopping, and multimedia, and were gathered at
a variety of times. Each app has been downloaded at
least one million times (across all its versions). We fo-
cused on a set of seven dangerous1 permissions that are
acquired by many of the apps we looked at.

Our evaluation consisted of installing and running
each app to understand its functionality, reading English-
language security and privacy policies and other doc-
umentation when available, and looking at app byte-
code to determine which privileged methods are called.
For each app, we evaluated how it uses its current per-
mission set and identified fine-grained permissions that
could replace some of these permissions.

The results of our study are summarized in Figure 1.
The original apps contain 66 uses of the seven danger-
ous permissions we considered. For 40 (61%) of these
uses, a combination of Dr. Android and Mr. Hide can
remove the permission and replace it with zero or more
fine-grained permissions. The resulting apps have the
same functionality as the original apps but have much
stronger privacy and security guarantees. An additional
8 (12%) of these uses can be similarly replaced by Mr.
Hide permissions but incur some loss of functionality
due only to limitations of our current implementation,
discussed more below. In the remainder of this section
we describe our fine-grained permissions in detail.

Internet permissions. The default Internet permission
in Android is pervasive, used in all the apps we sur-
veyed. At the same time, it is also the most danger-
ous, as it allows for arbitrary communication with any

1The Android platform defines normal (low risk) and dan-
gerous (high risk) protection levels for permissions (as well
as two other special cases we do not discuss). Dangerous
permissions are always shown at app installation time, and
normal permissions can be shown by clicking a disclosure
triangle, but by default are hidden.

3

horoscope.fr

A
d
v
.
T
a
sk

K
il
le
r
1
.9
.6
B
7
6

A
m
a
zo

n
1
.3
.0

A
n
g
ry

B
ir
d
s
1
.5
.3

A
n
g
ry

B
ir
d
s
R
io

1
.0
.0

A
S
T
R
O

2
.5
.2

B
a
rc
o
d
e
(z
x
in
g
)
3
.5
3

B
u
b
b
le

B
la
st

1
.0
.1
6

B
u
b
b
le

B
la
st

2
1
.0
.1
8

B
ri
g
h
te
st

F
la
sh

li
g
h
t
1
.9
.3

D
ro
p
b
o
x
1
.1
.1

E
S
P
N

S
co

re
C
en

te
r
2
.1
.3

F
la
sh

li
g
h
t
3
.9
.9
.1
2

F
re
eM

u
si
c
1
.8
.3

G
a
sB

u
d
d
y
1
.1
4

G
o
o
g
le

S
k
y
M
a
p
1
.6
.1

H
o
ro
sc
o
p
e
1
.5
.2

M
P
3
R
in
g
to
n
e
M
a
k
er

1
.9
3

S
h
a
za

m
2
.5
.3
-B

B
7
0
3
0
2

W
o
rd

s
W

it
h
F
ri
en

d
s
4
.6
0

INTERNET (19) 4 4 4 4 X 4 4 4 4 X 4 4 X 4 4 4 X 4 4

InternetURL(d) (13) G# # G# G# G#
AdsPrivate (9) G# G# G# G#
AdsGeo (5) G# G# G#
READ PHONE STATE (13) 4 X X 4 4 4 4 X X 4 X X X
UniqueID (6)
WAKE LOCK (9) X 4 X X 4 X X 4 X
Permission Unnecessary (3)
ACCESS FINE LOCATION (8) 4 4 4 4 4 4 4 4

ACCESS COARSE LOCATION (8) 4 4 4 4 4 4 4 4

LocationBlock (8)
WRITE SETTINGS (5) 4 4 4 4 4

SetRingtone (3)
Permission Unnecessary (2)
READ CONTACTS (4) X 4 4 4

ReadVisibleContacts (4) #

AdsPrivate: May displays ads, but without sharing personal
information with advertisers.
AdsGeo: May displays ads and may share your location, but no
other personal information, with advertisers.
InternetURL(d): May access the Internet services at domain d.
LocationBlock: May access approximate location, accurate to
150m (about one city block).

ReadVisibleContacts: May read contacts that are designated as
visible, but no other contacts.
SetRingtone: May modify ringtone settings on the phone, but
no other settings.
UniqueID: May read a random ID number for the phone, with
which to track the user’s usage of the app.

Figure 1: Permission usage in a range of the top free Android apps. We consider seven dangerous
Android permissions. For each such permission (in all caps), we show the fine-grained permissions
(described at the bottom of the figure) that can replace it in Mr. Hide. We also record situations
when a permission is unnecessary. A 4 indicates that the original permission can be removed while
a X indicates that the permission is still required. A indicates that Dr. Android and Mr. Hide can
successfully transform the app to use the fine-grained permission. A G# indicates a permission that
can be retrofitted, but with some changes to app functionality. A # indicates a transformation that
is possible but has not been implemented.

domain on the Internet. Fortunately, most apps com-
municate with a fixed set of domains. The fine-grained
permission InternetURL(d) targets this common case by
allowing network connections only to domain d and its
subdomains. As shown in Figure 1, InternetURL(d) is
useful in 13 of 19 apps. For five of these apps replac-
ing the existing Internet permission incurs some loss of
functionality. In two cases this is due to a partial im-
plementation of SSL in Mr. Hide; and in three cases it
because we do not support the WebView user-interface
widget. It would be straightforward to add the missing
interfaces to support these apps fully.

Three of the 6 apps legitimately need full Internet
permissions, and thus do not use our new permission;
for example, the ASTRO file manager provides an sftp

client for transferring files to and from arbitrary do-

mains. The remaining three apps use Internet access
only for ads, which we discuss next.

One common use of the Internet permission, particu-
larly for free apps, is to communicate with third-party
services that provide ads, via Android libraries such as
AdMob. However, this communication poses a privacy
risk for users, since any private data they allow an app
to access to perform its functionality (e.g., contacts,
photos, etc.) can potentially be sent to untrusted ad
servers. As described in the previous section, the per-
missions AdsPrivate and AdsGeo address this problem
by providing an adapter layer that isolates the ad func-
tionality as a service in a separate process and restricts
the flow of information to the ad server. Together, these
permissions can be used by 14 of the 19 apps we sur-
veyed. In half of these cases the result is functionally

4

identical (modulo rendering issues for ads in a new for-
mat), to the ads displayed in the original app. In the
other half, AdMob ads are displayed but ads from other
ad libraries and servers are not; support for these could
be added to Mr. Hide in the future.

Phone state permissions. The READ PHONE STATE per-
mission allows an app to access various kinds of tele-
phony data from the phone. We found that in 6 out of
the 13 uses, the permission is used only to access either
the phone-specific (IMEI) or SIM-card-specific (IMSI)
ID number. This ID allows the app provider to track
how clients use the app. Our fine-grained permission
UniqueID can replace READ PHONE STATE in these 6
cases, providing access only to a randomly generated ID
number (distinct from the IMEI and IMSI for greater
security).

Of the remaining 7 apps, 3 of them use the permission
READ PHONE STATE only to obtain notification about
coarse phone status changes (e.g., to silence the music in
FreeMusic when the phone rings). It would be possible
to create a permission in Mr. Hide tailored to this use,
but we have not done so yet.

Wake-lock permissions. The WAKE LOCK permission
enables an app to keep certain aspects of the phone
“awake” while a wake lock is held. For example, an app
can acquire a lock to keep the CPU awake during CPU-
intensive tasks such as copying or downloading, or to
keep the screen awake while a video is playing.

It would be possible to create several fine-grained per-
missions to replace various uses of WAKE LOCK . For
example, we could refine CPU wake locks so that when
the phone has less than 25% battery remaining (and is
running on the battery) the wake lock is dropped. How-
ever, it is unclear how widely applicable and useful such
permissions would be, and thus we have chosen not to
pursue them.

Surprisingly, we observed that the WAKE LOCK per-
mission is unnecessary in 3 of the 9 apps that acquire it.
These apps use android.media.MediaPlayer, whose docu-
mentation says that the permission may be necessary.
However, an examination of its source indicates that
the permission is never used. Thus, Dr. Android can be
used to simply remove WAKE LOCK from these three
apps.

Location permissions. The ACCESS FINE LOCATION
and ACCESS COARSE LOCATION permissions provide
GPS- and networked-based location information, respec-
tively. In many circumstances, users may be uncom-
fortable providing their precise location to apps. Our
LocationBlock permission can be used in place of the
default permissions in all 8 apps to retain app func-
tionality while revealing less information. The imple-

Mr. Hide
service

Sensitive Android APIs

app hidelib

process
boundary

(direct access
removed)

Figure 2: Mr. Hide architecture

mentation of LocationBlock provides locations that are
fuzzed via truncation to approximately the accuracy of
a city block (150m). The reason for a simple truncation
rather than a Gaussian blur is that the latter could re-
veal the user’s location over time via multiple samples.
It would also be easy to provide other options for users
(e.g., accuracy up to the zip code or city level).

Settings permissions. Android’s WRITE SETTINGS per-
mission allows an app to read and write a variety of
system settings. In 3 of the 5 apps that require the per-
mission, we found that their only use was to change the
phone’s ringtone settings. Our SetRingtone permission
is dedicated to this particular privilege. In the other 2
apps we found that the permission was unnecessary and
can be removed by Dr. Android.

Read contacts permissions. The READ CONTACTS per-
mission allows all contacts on the phone to be read. Our
ReadVisibleContacts permission leverages Android’s no-
tion of contact visibility, a boolean flag associated with
each contact. With this restricted permission, apps may
only see contacts marked as visible.

This permission is more a demonstration than a prac-
tical design—invisible contacts are typically used for
special app information, such as synchronization ac-
counts, that the app wants to see but users do not.
However, it would be straightforward to generalize our
approach to support Android’s notion of contact groups
(e.g., friends, colleagues) or to enforce an arbitrary per-
app security policy controlled by a master configuration
program belonging to Mr. Hide. Currently, our imple-
mentation does not work for Barcode because that app
uses a deprecated API for accessing contacts.

4. IMPLEMENTING FINED-GRAINED PER-
MISSIONS IN Mr. Hide

As discussed above, Mr. Hide provides controlled ac-
cess to system resources by interposing a new API, im-
plemented via Android services, between underlying re-
sources and client apps. Figure 2 gives an overview
of the Mr. Hide architecture, which contains two main

5

components: the Mr. Hide service, which runs in a sepa-
rate process, and hidelib, a drop-in replacement for sen-
sitive Android APIs that manages all interprocess com-
munication with the Mr. Hide services. As illustrated
in the figure and discussed more in Section 5, hidelib is
actually appended to the original app’s apk.

Before presenting details of the Mr. Hide implemen-
tation, we first give an overview of some aspects of the
Android platform.

4.1 Android platform overview
Android provides a component-oriented programming

model with an associated security model [8]. An An-
droid app consists of four main types of components:
Activities that define the user interface screens of an ap-
plication; Services that run in the background; Broad-
cast receivers that await asynchronous messages from
other components, including components of other appli-
cations; and Content providers that store data and al-
low access to it via a relational database interface. Apps
are typically written in Java and compiled to Dalvik, a
type and memory safe bytecode format. Each app runs
in its own Dalvik virtual machine and in its own Linux
process as a distinct user. This provides system-level
isolation among Android apps. Apps may also include
native code, although in our experience this is uncom-
mon (except for rendering in games). Mr. Hide provides
no special interfaces for native code, but note that na-
tive code must still have permission to access sensitive
resources. Thus if we remove a platform permission and
replace it with a Mr. Hide permission, we can be certain
the native code no longer has the access granted by the
platform permission.

Mr. Hide uses Android’s permission framework to de-
fine its own set of permissions, which apps can then re-
quest in the same way as system permissions. These Mr.
Hide permissions behave just like platform permissions—
they are displayed to the user at installation time, and
no additional permissions can be acquired at run time.
When Mr. Hide receives a remote procedure call, it first
calls a platform method, such as checkCallingPermis-
sion(), to check whether the caller has the right Mr.
Hide permission, and throws an exception if not.

Binding to the Mr. Hide service. Before communicat-
ing with the Mr. Hide service via interprocess commu-
nication, applications first must bind to the service.
Moreover, this binding process must be completed be-
fore running any code that communicates with Mr. Hide.
We found that achieving synchronous service binding in
Android is a bit tricky, because the code that binds the
service must return control to the platform before the
binding becomes available.

We experimented with several possible solutions, and
found the following approach works reliably on our de-

vices: We perform service binding in the app’s application-
level onCreate() method, which is called as soon as the
app is launched. A service binding established in this
way exists throughout the lifetime of the app, and will
be reclaimed when the app exits. In all apps we looked
at, this particular onCreate() method is either not pro-
vided (in which case we can supply our own to bind
the service), or it exists but does not contain any code
that would need to contact Mr. Hide (in which case we
can chain it together with our own method to bind the
service). Then, we demote the app’s “launcher” activ-
ity (the first to be executed when the app is started
by clicking on its icon) to a regular activity, and in-
sert a special Mr. Hide activity with a splash screen.
The splash screen displays a message (“Protected by
Dr. Android and Mr. Hide”) and then exits, passing
control onto what was the main activity. This extra
interposition of an activity causes the service binding
begun in the app’s onCreate() to finish before the de-
moted launcher activity is reached, thus enabling the
rest of the app to assume the service is bound.

Note that there are ways to start an app without in-
voking its launcher activity, e.g., intents can be used to
invoke non-launcher activities from another app. How-
ever, these are less commonly used, and Mr. Hide could
handle these cases by adding suitable logic to bind the
service if needed before these other activities execute.

Parameterized permissions. Finally, Android does not
directly support parameterized permissions such as Internet-
URL(d), but we can encode these using a permission
tree, which is a family of permissions whose names share
a common prefix. For example, InternetURL(google.
com) is represented in Mr. Hide as an instance of class
hidelib.permission.net.google com, which is part of the
hidelib.permission.net tree. Note that the permissions
provided by a service such as Mr. Hide need to be de-
fined by the time that the service’s clients are installed.
Mr. Hide contains a GUI for adding permissions needed
by new clients, as well as a predefined list of useful
InternetURL(d) permissions.

4.2 Permission implementations

InternetURL(x). Android apps access the Internet us-
ing libraries that wrap low-level native code interfaces.
This native code provides access to the Linux system
call interface and the efficient cryptographic libraries
used for SSL sockets. hidelib virtualizes these low-level
components, implementing native calls declared in the
classes InternetAddress, OSNetworkSystem, and Native-
Crypto. Would-be native calls are forwarded to a Mr.
Hide service. Structures that cannot not be marshaled
for RPC, such as file handles and SSL contexts, are rep-
resented using unique proxy values, which the Mr. Hide

6

google.com
google.com

services maps to, e.g., Linux file handles. Mr. Hide per-
forms access control checks before establishing socket
connections or performing DNS lookups.

Most apps do not directly access low-level code, such
as OSNetworkSystem, and instead rely on high-level,
built-in libraries for network access. These libraries in-
clude java.net, org.apache, android.webkit, and javax.net.
Because these built-in libraries are dynamically linked,
we cannot modify them using Dr. Android. Instead we
build work-alike libraries by recompiling the original
source to these libraries, making suitable source-level
changes both automatically (e.g., renaming classes and
methods) and manually (e.g., modifications to use our
native code wrappers). These recompiled libraries are
included in hidelib. hidelib replaces large parts of the
functionality of java.net, org.apache, and javax.net. Be-
cause these interfaces are large, we do not have complete
coverage of all functions, which occasionally leads to ob-
servable differences in apps, as mentioned in Section 3.
We also do not support android.webkit; later versions of
the platform include hooks for controlling webkit’s use
of sockets, which we believe would be a better imple-
mentation choice for Mr. Hide than recompilation.

AdsPrivate and AdsGeo. Mr. Hide’s AdsPrivate service
provides an interface allowing clients to request ads
from the AdMob webservice. Standard apps use an
unrestricted INTERNET permission to connect to the
AdMob webservice, which may send private informa-
tion, such as a cookie for ad targeting. In contrast,
changing apps to use AdsPrivate allows apps to receive
ads without being granted arbitrary network access.

Mr. Hide manages connections to the AdMob webser-
vice in an isolated service process. When this process
requests ads on behalf of clients, it forwards the devel-
oper’s advertiser id (used to credit app developers for
displaying ads), but no other information, to AdMob
when requesting ads. After making a request, Mr. Hide
receives an an HTML formatted ad, downloads a ref-
erenced image, marshals the image as appropriate, and
returns it to the client via a remote procedure call. Mr.
Hide does not currently support newer ads containing
javascript and multiple images, but these could be sup-
ported similarly.

The implementation of AdsGeo is similar, except Mr.
Hide includes a location with the ad requests. This
location is obtained by the Mr. Hide service itself, so
apps may be given AdsGeo without having access to
location. Currently this location is precise, but could be
made coarse-grained to reduce the information provided
to AdMob.

Two potential covert channels remain in this archi-
tecture: an advertiser could use two or more ids to
send binary encoded strings, or could leak information
in the timing of ad requests. We believe these low-

bandwidth channels pose relatively minor privacy risks,
and a stricter implementation of AdsPrivate and Ads-
Geo could mitigate these channels by memoizing the
advertiser ID and requesting ads on a suitable (fixed or
randomized) schedule.

LocationBlock and UniqueID. Apps typically access lo-
cation data via a special LocationManager object pro-
vided by the platform. The LocationManager allows
the programmer to request asynchronous callbacks with
current location information at programmer-selected time
intervals. To implement LocationBlock, we provide a
replacement for LocationManager in hidelib that passes
on requests for asynchronous callbacks to the Mr. Hide
service. That service polls the location at the specified
intervals (using the system LocationManager) and then
does a remote procedure call back to hidelib’s Location-
Manager, which then calls the callback specified by the
app. GPS location coordinates returned by Mr. Hide
are truncated to provide approximately 150m resolu-
tion.

In a few cases, apps also use LocationManager. get-
LastKnownLocation() to find location information. hidelib
returns null in this case, which is allowed in the API and
should be handled by the app.

Apps can also access the current location via a Tele-
phonyManager object (which finds location based on cell
network information). The same object is also used to
return a unique identifier for the device. Thus, hidelib
provides a replacement TelephonyManager object. For
location information retrieved in this way, hidelib sim-
ply returns null values, indicating the app should get
the location a different way—this case should be han-
dled according to the API, and was in all the apps we
studied.

To support UniqueID, our TelephonyManager’s getDe-
viceId() method returns a fixed value that is not the
device’s actual id. This could easily be generalized to a
range of policies, such as returning a random value each
time, returning a per-app randomized value, returning
a per-app-author randomized value, etc.

SetRingtone. Device ringtones can be set in two ways
on Android, using a RingtoneManager object or by call-
ing Settings.System.putString(); the former is actually
implemented on top of the latter. Thus, to implement
SetRingtone, hidelib provides replacement RingtoneMan-
ager and Settings.System classes, each of which contact
a Mr. Hide service to change a ringtone when requested.

The Mr. Hide service itself a thin wrapper that checks
permissions and forwards Settings.System.putString() re-
quests.

ReadVisibleContacts. Contacts are implemented on An-
droid as a content provider, i.e., a database that can

7

 Dr. Android

output.apkinput.apk

apktool

classes.dex

Android
Manifest.xml

Bytecode
rewriter

Manifest
rewriter

apktool

hidelib.dex

Other
Resources

(*.xml)
Resource
rewriter

Other files (unchanged)

Figure 3: Dr. Android architecture

be queried by apps. Content providers are accessed by
asking the platform to retrieve a particular URI that
contains both the content provider and any additional
parameters to pass to it, e.g., an app can request con-
tent://contacts to get all the contacts on the device. For
portability, apps typically derive such URIs from prede-
fined strings, e.g., ContactsContract.Contacts.CONTENT
URI contains the URI just mentioned.

Mr. Hide implements a new content provider that
uses the same patterns as device Contacts, but with
a different name. Then hidelib provides replacement
classes for ContactsContract.Contacts and similar that
refer to Mr. Hide’s content provider. The Mr. Hide ser-
vice captures the URIs sent to the content provider,
inserts extra selection constraints to the query to filter
out contacts that are invisible, and sends the modified
query to the underlying Android content provider.

5. Dr. Android
As discussed earlier, we developed a tool called Dr.

Android that performs binary transformation of An-
droid apps to replace Android API calls with calls to
Mr. Hide equivalents. Figure 3 shows the architecture
of Dr. Android. Given an input apk file, Dr. Android
uses apktool [12] to decompress the input file into its
constituent files and directories. Dr. Android then per-
forms three kinds of transformations. First, it modifies
classes.dex, the file that contains the Dalvik bytecode
for the app, to use Mr. Hide; in the process, Dr. An-
droid also concatenates hidelib.dex, an adapter layer to
connect to the Mr. Hide service running in a separate
process, to the output classes.dex file. Second, Dr. An-
droid modifies the list of permissions in AndroidMani-
fest.xml, the application’s manifest, which contains the
permissions requested at app installation time. In some
cases, Dr. Android also must modify some additional
XML files (details below). All of the modified files, as
well as the remaining files in the app (e.g., images, data

files, etc) are then repackaged using apktool to produce
a transformed apk.

Note that we need to digitally sign output.apk to run
it on a phone. It is easy to generate a key to sign apps,
but it will unavoidably differ from the key for the orig-
inal app. Fortunately, app signatures are mostly used
to establish trust relationships between different apps
signed by the same key. We can preserve these rela-
tionships by consistently signing apps from the same
original authors with the same new key.

Manifest and resource rewriting are quite straightfor-
ward. Existing permissions appear as <permission> el-
ements in the manifest, and so those elements are mod-
ified as necessary to refer to the appropriate Mr. Hide
permissions. We also modify the launcher <Activity>
to be an ordinary, non-launcher activity, and insert Mr.
Hide’s splash screen activity. Similarly, resource rewrit-
ing simply involves modifying some elements in XML
files. Resource rewriting is only used to support Ads-
Private and AdsGeo, and is explained in more detail in
Section 5.2. Thus, most of the challenge in Dr. Android
is in transforming Dalvik bytecode files.

5.1 Transforming bytecode files
Dalvik bytecode files are structured as a series of

indexed “pools” that contain, among others, strings,
types, field signatures, method signatures, classes, field
definitions, and method definitions.2 The various pools
are tightly intertwined, with many pointers from one
to another, e.g., a method signature contains a list of
pointers to the type pool, and the type pool contains
pointers to elements in the string pool (containing the
actual type names). Dalvik bytecode instructions (which
appear in method definitions) often refer to elements
in various pools, e.g., method invocation instructions
include a pointer to a method signature. Before the
Dalvik Virtual Machine executes a bytecode file, it first
verifies it to check that, among other things, the file is
well-formed and the method bodies are type safe.

The bytecode transformer in Dr. Android comprises
approximately 10K lines of OCaml code that parses a
bytecode file into an in-memory data structure, modifies
that data structure, and then unparses it to produce
an output bytecode file. We designed our in-memory
representation to be as faithful as possible to the on-disk
representation, to make the input and output process
easy.

Figure 4 gives slightly simplified OCaml code for a
function rewrite that applies Mr. Hide-specific modifi-
cations to its argument dx, the data structure (of type
dex) representing a bytecode file. (Note that we chose
to modify this data structure by side effects rather than

2Note that unlike in the Java Virtual Machine, in which each
class is compiled to separate file, in Dalvik all the classes for
an app appear in the same .dex file.

8

1 type perm = AdsPrivate | AdsGeo | ...
2 let (perm map : perm → (string ∗ string) list) = ...
3 let (perm manager : perm → (string ∗ string) list) = ...
4

5 let rewrite (dx : dex) (ps : perm list) : unit =
6 merge hidelib dx;
7 replace classes dx (List .concat (List .map perm map ps))
8 if (List .mem AdsPrivate ps || List .mem AdsGeo ps) then
9 elide perm checks dx [”android.Permission.INTERNET”;

10 ”android.Permission.ACCESS FINE LOCATION”;
11 ”android.Permission.ACCESS COARSE LOCATION”];
12 replace managers dx ps perm managers;
13 if List .mem ReadVisibleContacts ps then
14 replace contact strings dx;
15 insert service binding dx

Figure 4: Bytecode rewriter pseudocode

using a purely functional implementation because it was
slightly simpler.) The second argument, ps, is the list
of Mr. Hide permissions for which the app should be
rewritten.

This function begins by calling merge hidelib to ap-
pend the contents of hidelib.dex to dx. This is not quite
as easy as it sounds, because the Dalvik verifier re-
quires that each of the pools in a bytecode file are both
duplicate-free and sorted. For example, there must be
at most one string V representing the type void in the
type pool, but it is almost guaranteed this type appears
in both the app’s code and hidelib.dex. In our implemen-
tation, we permit a dex data structure to contain du-
plicates and out-of-order elements, and we re-sort and
eliminate duplicates in each pool before producing the
output file.

Next, on line 7 we call replace classes to change ref-
erences to Android platform code to refer to hidelib.dex
instead. As mentioned earlier, we designed the Mr. Hide
adapter layer to provide drop-in replacements for plat-
form APIs. Thus, the input to replace classes is a map
from platform API class names to the corresponding
hidelib.dex class names, which is then used to modify
all references to that type, e.g., in instructions, field
or method signatures, debugging information, annota-
tions, etc.. For example, to support AdsPrivate Dr. An-
droid transforms accesses to com.admob.android.ads.AdView
with accesses to a class hidelib.ads.clientsideonly.AdView,
among many others. Here, the mappings are repre-
sented with associative lists, and perm map is defined
on line 2 as a function that, given a permission, returns
its corresponding mapping. The mappings for every
permission in ps are simply concatenated together on
line 7.

Note that replace classes does not replace references
inside code from hidelib.dex. This lets us neatly handle
the case when one class has both privileged and un-

privileged methods; the privileged method wrapped in
hidelib.dex contacts the Mr. Hide service, and the un-
privileged methods call into the platform as usual, and
hence we do not rewrite those calls.

Then, on lines 8–14, we modify some code to sup-
port AdsPrivate, AdsGeo, LocationBlock , SetRingtone,
and ReadVisibleContacts; we defer discussion of these
modifications until we talk about those permissions in
Section 5.2. Finally, on line 15 we insert code to bind
the Mr. Hide service (running in a separate process)
so it can be called from the app. As discussed earlier,
we place this code in the application-level onCreate()
method. More specifically, apps specify this onCreate()
method by naming its containing class in the manifest.
If such a class is defined, we modify it so its super-
class is hidelib.Application, which will ensure Mr. Hide’s
onCreate() is called. Otherwise, we simply extend the
manifest to name hidelib.Application as the class con-
taining the application’s onCreate(). Additionally, re-
call that after Mr. Hide’s onCreate() runs, it starts a
splash screen. The call to insert service binding stores
the name of the app’s original launcher activity in a
designated string, and the splash screen code in Mr.
Hide uses that name to reflectively launch that activity
when it exits.

Next, we discuss in more detail the rewrites necessary
for each of Mr. Hide’s new permissions.

5.2 Mr. Hide-specific rewrites

InternetURL. As mentioned earlier, hidelib provides an
interface that replaces java.net and org.apache. Thus,
the transformation that replaces INTERNET permis-
sion with various InternetURL(d) permissions modifies
references to those packages to simply refer to Mr. Hide
instead.

Dr. Android includes a tool that finds all URL-like
strings appearing in an app’s string pool. Then when
we add InternetURL(d) permissions to an app, we do
so for all such strings. In our experience, this allows
apps to run correctly, while at the same time greatly
restricting their access to the Internet.

AdsPrivate/AdsGeo. As expected, the transformation
for AdsPrivate and AdsGeo replaces calls to the AdMob
library with appropriate Mr. Hide equivalents. Inter-
estingly, there are two additional steps needed to make
ads work.

First, we discovered that AdMob checks for the pres-
ence of the INTERNET permission, and disables dis-
play of ads if not present. Some apps that use these
libraries also check for ACCESS FINE LOCATION and
ACCESS COARSE LOCATION, to determine whether to
show localized ads. Thus, Dr. Android disables these
permission checks. In Figure 4, lines 8–11 call a func-

9

tion elide perm checks that takes a list of permission
names and replaces checks for those with no-ops. Specif-
ically, it finds code sequences with the following pat-
tern, where @str id is the (index of the) target per-
mission string, and @mtd id refers to the method Con-
text.checkCallingOrSelfPermission:

const-string v x @str id
invoke-virtual this , v x , @mtd id
move-result v y

elide perm checks replaces the last instruction in the se-
quence with

move-const v y 0

where constant 0 means PERMISSION GRANTED.
Second, we found that apps often contain XML files

that customize the screen layout for ads under a range
of different screen resolutions. These files contain ref-
erences to com.google.ads.GoogleAdView and other ad-
related classes, and thus we modify those to refer to
Mr. Hide’s ad classes. This is equivalent to class re-
placement in .dex files, except here we need to replace
classes that appear textually in XML files.

One additional challenge we encountered in support-
ing ad permissions is that two apps (Shazam and Ad-
vanced Task Killer) had been obfuscated by changing
class and method names. This is not a problem with
transformations for platform APIs, since those names
cannot be changed; but ad libraries are statically linked
into apps, and so their classes and methods can be re-
named. To solve this problem, we developed a simple
tool that matches up method signatures between ob-
fuscated and unobfuscated AdMob interfaces (the ob-
fuscation did not change these signatures). Using the
output of this tool, we can then direct Dr. Android to
transform the correct set of ad API calls to use Mr.
Hide instead. This approach allowed us to deobfuscate
Shazam and Advanced Task Killer sufficiently to sup-
port ad permissions.

LocationBlock and UniqueID. As mentioned earlier, apps
access locations via either a LocationManager or Tele-
phonyManager object; the latter is also used to find
the device ID. Apps request these objects by calling
the platform function getSystemService(), which takes
as its argument a string describing the type of manager
needed (location, telephony, etc.). The getSystemSer-
vice() method then returns a generic Java Object that
must be downcast to a LocationManager or Telephony-
Manager, as appropriate. Dr. Android detects this cast
and replaces it with a call to hidelib.dex to create a man-
ager object of the appropriate type. Notice that this
cast detection trick avoids the need for a separate static
analysis to discover which calls to getSystemService() re-
turn which managers (or objects for other services unre-
lated to location or telephony). Since requests for loca-

tions and unique ids all go through the LocationManager
and TelephonyManager objects, once we replace those
we need not modify any other part of the class. In Fig-
ure 4, this LocationManager substitution is performed
by the calls to replace managers on line 12. In addition
to the dex data structure, this function takes the list of
permissions and a function perm managers that defines
which managers need to be substituted for each permis-
sion. For example, perm manager LocationBlock would
return a list mapping Android’s LocationManager and
TelephonyManager to hidelib’s equivalents.

SetRingtone. Apps change the phone’s ringtone using a
RingtoneManager, and so as above, we replace such an
object returned from getSystemService() with the corre-
sponding object from Mr. Hide. As above, this occurs
on line 12.

ReadVisibleContacts. As discussed earlier, contacts are
implemented as a content provider, accessed via URIs
that are usually constructed from constant strings de-
fined in the platform API. hidelib contains replacements
for those classes, so to change an app to use ReadVisible-
Contacts, we change references to the API classes con-
taining contact URIs to the hidelib classes. We found
that some apps also hard code the URIs instead of using
platform classes, so to support these cases Dr. Android
also searchers for contact-related URI strings in the
string pool and modifies them appropriately. Lines 13–
14 in Figure 4 perform this rewriting.

6. EXPERIMENTS
We evaluated the combination of Mr. Hide and Dr.

Android in three ways. First, we performed informal
testing on Mr. Hide to ensure it implements all its per-
missions correctly. For example, we tested using Mr.
Hide to access contacts and verified that only visible
contacts were revealed, and similarly for the other per-
missions. As these particular results are not very inter-
esting, we do not report on them further. Second, we
used microbenchmarks to measure the overhead of us-
ing Mr. Hide and Dr. Android compared to using direct
system calls. Third, we ran Dr. Android on the apps
discussed in Section 3 and evaluated the correctness and
usability of the transformed apps, using a purpose-built
automated testing framework in conjunction with man-
ual tests.

6.1 Microbenchmark performance
To measure the overhead of the interprocess commu-

nication entailed by Mr. Hide, we developed a set of mi-
crobenchmarks as Android activities that retrieve data
from a sequence of 100 distinct web pages on the local
network; request 10 location updates; change ringtone
paths 1,000 times; and make 100 queries to the contact

10

Task Orig (s) Transformed (s) Slowdown
Internet 16.241 20.252 25%
Location 15.004 19.407 29%
Ringtone 1.257 1.382 10%
Contacts 0.634 0.953 50%

Figure 5: Microbenchmark performance results

manager.
Figure 5 shows the running times of these microbench-

marks before and after applying Mr. Hide and Dr. An-
droid, and the slowdown ratio. These results are the av-
erage of 5 runs on a Google Nexus S phone. As could be
expected, the slowdowns are fairly significant, as the in-
terprocess communication required by Mr. Hide is quite
an expensive operation. Nevertheless, the cost of this
overhead is incurred only at relatively infrequent calls
into system-level code, and it is rarely an issue in prac-
tice, as discussed below.

6.2 Mr. Hide and Dr. Android on real apps
Using a combination of automated and manual test-

ing, we evaluated if and how rewriting changes the be-
havior of the apps discussed in Section 3. We used Dr.
Android’s reporting features and the Troyd framework
(described below) to track test coverage, comparing the
set of activities exercised by testing with the set de-
clared in each application’s binary. Figure 6 summa-
rizes this coverage information and gives pertinent data
about the rewriting process for each app.

Scope and correctness of rewriting. Our experiments
show Dr. Android is capable of processing commercially
published apps with acceptable performance, yielding
correct Dalvik binaries.

Columns 2–4 in Figure 6 describe the size of apps be-
fore rewriting, including the apk size, the size of classes.dex
after the apk is unpacked, and the number of Dalvik
bytecode instructions. The next two columns report
the number of changes applied by Dr. Android and the
running time of Dr. Android. A single change com-
prises either an instruction modification to refer to a
different class; an elision of a permission check (counts
as one change); replacement of a Location, Telephony,
or RingtoneManager (again, one change); or changing a
string in the string table for another reason (changing a
content URI, or modifying the string that contains the
activity to launch after the splash screen). Reported
performance is based on one run on a 2.5 GHz Intel Core
2 Duo with 4 GB RAM, running Mac OS X 10.6.8. As
the running times show, applying Dr. Android is rea-
sonably fast, and as it is done only once, should not be
a concern.

The Android platform performs lightweight bytecode
verification when apps are installed on a phone, and
more thorough verification during application runtime.

These verification phases test various well-formedness
constraints on Dalvik files. All tested apps install and
run without verification errors, giving confidence that
Dr. Android’s transformations are structurally correct.

Automated and manual testing methodology. To eval-
uate the behavior of rewritten apps, we developed an
automated testing framework, Troyd, concurrently with
this work. We describe Troyd only briefly, as it is not
the focus of this paper. The key novelty of Troyd is that
it can run on apps without source code, yet it allows test
writers to refer to GUI elements by name or text con-
tent. Test cases—written as Ruby scripts—control apps
by injecting key events like back or menu button clicks,
and can click or edit attributes of all View elements on
the screen at run time. Test cases can also get attributes
of View elements (e.g., contents of text boxes), which
can be used to write assertions. Troyd currently does
not support clicking absolute screen locations or drag-
ging, which limits its applicability to some apps such as
games; we perform additional manual testing in these
cases.

We wrote test cases for our apps with the goal of cov-
ering as many of an app’s Activitys as possible. Each
Android Activity displays its own user interface screen
to the user and so represents a distinct piece of function-
ality supported by the app. We manually experimented
with each app to understand the behavior of each of its
activities. We then developed tests in Troyd to verify
that the expected buttons, menus, and other displays
(e.g., ads) appear on an activity’s UI and that clicking
on these items produces the expected behavior (e.g.,
displaying a different Activity, quitting the application,
etc.). We ran our automated tests on a Google Nexus
S phone.

Some activities are not covered by Troyd for various
reasons, including dead code (i.e., unreachable activi-
ties), activities that are not easy to automatically test
(e.g., sign up screens that would require creating fake
logins to repeatedly test), activities that require click-
ing absolute screen locations or dragging, activities that
are launched in a separate process (and hence cannot
be controlled by Troyd), and activities that are tedious
to reach with automated tests.

Additionally, we manually tested all rewritten apps,
checking for obvious changes in performance or func-
tionality. For each app we attempted to visit all ac-
cessible activities and use most features. Again, fea-
tures with costly or annoying side effects, such as final-
izing purchases using the Amazon app or posting games
scores to Facebook using the Words with Friends app,
were not tested. We used Troyd to log visited activities
during manual testing.

The last three columns in Figure 6 report the cover-
age of our test suite in terms of activities, including the

11

Name Apk (KB) Dex (KB) # Ins # Chg Tm (s) # Acts # Aut # Man
Advanced Task Killer 98 110 6,724 115 7.51 3 3 3
Amazon 2,288 1,607 114,673 178 36.24 28 – 15
Angry Birds 17,111 254 24,212 354 22.75 2 – 2
Angry Birds Rio 12,835 203 18,539 274 21.56 2 – 2
ASTRO 2,241 1,176 112,342 135 20.01 29 13 17
Barcode (zxing) 496 454 64,045 315 15.65 9 7 8
Bubble Blast 1,413 714 66,189 1,013 17.27 11 6 8
Bubble Blast 2 4,489 879 82,233 1,063 24.34 16 5 12
Brightest Flashlight 1,752 1,857 173,172 1,289 27.85 6 – 1
Dropbox 1,137 1,040 94,367 4,111 13.35 12 8 6
ESPN ScoreCenter 1,483 670 57,541 608 26.48 5 – 4
Flashlight 1,665 464 44,592 581 18.80 6 – 1
FreeMusic 539 655 59,111 676 10.70 12 – 6
Gas Buddy 1,359 853 74,240 709 23.59 22 15 13
Google Sky Map 2,125 415 29,401 81 17.32 6 4 5
Horoscope 3,023 815 88,760 698 29.33 26 – 11
MP3 Ringtone 428 373 44,014 50 10.20 11 – 7
Shazam 1,130 756 89,310 661 21.60 19 10 10
Words With Friends 5,314 2,718 223,620 1,226 61.18 38 – 13

Figure 6: Mr. Hide and Dr. Android results on apps

total number of activities defined in each app and the
number covered with automated and with manual test-
ing. Conservatively, our automatic and manual testing
together cover at least 56% of the activities across all
apps.

Behavior of rewritten apps. During testing, we found
that almost all activities of applications function nor-
mally, with no observable changes. In more detail, all
automated Troyd tests pass—running our test suites
before and after applying Dr. Android produced identi-
cal sets of passing assertions—and when we tested the
apps manually, we could detect no differences in most
activities’ behavior.

As already mentioned in Figure 1, we did find some
differences in certain activities that use the Internet,
due to limitations of Mr. Hide. First, ESPN ScoreCen-
ter, Google Sky Map, and Shazam use a WebView wid-
get, which we do not support; these views show place-
holder text after rewriting. Second, recall that Mr.
Hide’s implementation of ads renders a single image.
We observed that this design choice causes ads contain-
ing Javascript or multiple images to display improperly.
Finally, Barcode uses parts of the Java SSL framework
we do not cover; even so, the Barcode app still works
with Mr. Hide’s InternetURL permission, but users lose
the ability to search a book’s text after scanning a
barcode-encoded ISBN. In general, we think these dif-
ferences may be acceptable to users in exchange for the
increased security provided, and we expect that further
engineering would eliminate them.

Transformed apps may experience a noticeable de-
lay on startup while the app connects to Mr. Hide ser-
vices. After the initial connection is established, appli-
cation performance, measured by informal observation,
is similar for transformed and untransformed applica-
tions. We speculate that this is because the cost of

using Mr. Hide is amortized over the cost of other op-
erations, and because the test apps are designed to be
interactive, spending a large share of time waiting for
user input.

7. RELATED WORK
Several other researchers have proposed mechanisms

to refine or reduce permissions in Android. MockDroid
allows users to replace an app’s view of certain private
data with fake information [3]. Apex is similar, and also
lets the user enforce simple constraints such as the num-
ber of times per day a resource may be accessed [16].
TISSA gives users detailed control over an app’s access
to selected private data (phone identity, location, con-
tacts, and the call log), letting the user decide whether
the app can see the true data, empty data, anonymized
data, or mock data [19]. AppFence similarly lets users
provide mock data to apps requesting private informa-
tion, and can also ensure private data that is released to
apps does not leave the device [15]. A limitation of all
of these approaches is that they require modifications to
the Android platform, and hence to be used in practice
must either be adopted by Google or device providers,
or must be run on rooted phones. In contrast, Dr. An-
droid and Mr. Hide run on stock, unmodified Android
systems available today.

Researchers have also developed other ways to en-
hance Android’s overall security framework. Kirin em-
ploys a set of user-defined security rules to flag poten-
tial malware at install time [7]. Saint enriches permis-
sions on Android to support a variety of installation
constraints, e.g., a permission can include a whitelist
of apps that may request it [17]. These approaches are
complementary to our system, as they take the platform
permissions as is and do not refine them.

There have been several studies of Android’s permis-

12

sions, sensitive APIs, and the use of permissions across
apps. Barrera et al. [2] analyze the way permissions are
used in Android apps, and observe that only a small
number of Android permissions are widely used but that
some of these, in particular Internet permissions, are
overly broad (as we have also found). Vidas et al. [18]
describe a tool that, using documentation-derived in-
formation, can statically analyze an app’s source code
to find a minimum set of permissions it needs. Stow-
away [10] performs a static analysis on the Android API
itself to discover which APIs require what permissions,
something they found is not always well documented.
(We used Stowaway’s data set in several cases to help
determine what adapters we needed to implement in
Mr. Hide.)

Finally, several tools have been developed that look
for security issues in Android apps. TaintDroid tracks
the flow of sensitive information [5]. Ded [6], a Dalvik-
to-Java decompiler, has been used to discover previ-
ously undisclosed device identifier leaks. ComDroid [4]
finds vulnerabilities related to Intent handling. Felt et
al. [9] study the problem of permission redelegation, in
which an app is tricked into providing sensitive capa-
bilities to another app. Woodpecker [14] uses dataflow
analysis to find capability leaks on Android phones. All
of these tools focus on improper use of the current set
of Android’s permissions. Dr. Android and Mr. Hide
take a complimentary approach, replacing existing per-
missions with finer-grained ones to reduce or eliminate
consequences of security issues.

8. CONCLUSIONS AND FUTURE WORK
We presented Mr. Hide and Dr. Android, a pair of

tools that provide finer-grained permissions on Android
without requiring any platform modifications. Mr. Hide
runs as a service, providing access to sensitive capabil-
ities along with a set of fine-grained permissions that
grant access to the service. Dr. Android transforms
apps to use Mr. Hide, operating directly on apks to
change coarse-grain platform permissions into finer-grain
Mr. Hide permissions, and modifying Dalvik bytecode
to access sensitive resources via Mr. Hide’s adapter layer.
We applied Mr. Hide and Dr. Android to a range of
apps, and found that they leave app behavior largely
unchanged, while maintaining acceptable performance.
Our results suggest that Dr. Android and Mr. Hide pro-
vide stronger privacy and security guarantees while re-
taining application functionality and performance.

Acknowledgements
This research was supported in part by NSF CNS-1064997
and by a research award from Google. Thanks to Philip
Phelps for helping develop the microbenchmarking app.

9. REFERENCES

[1] Android Police. Massive Security Vulnerability In
HTC Android Devices (EVO 3D, 4G,
Thunderbolt, Others) Exposes Phone Numbers,
GPS, SMS, Emails Addresses, Much More, Oct.
2011. http://www.androidpolice.com/2011/10/01/
massive-security-vulnerability-in-htc-android-devices-
evo-3d-4g-thunderbolt-others-exposes-phone-numbers-
gps-sms-emails-addresses-much-more.

[2] D. Barrera, H. Kayacik, P. van Oorschot, and
A. Somayaji. A methodology for empirical
analysis of permission-based security models and
its application to android. In CCS, pages 73–84,
2010.

[3] A. R. Beresford, A. Rice, N. Skehin, and
R. Sohan. MockDroid: trading privacy for
application functionality on smartphones. In
HotMobile, 2011.

[4] E. Chin, A. P. Felt, K. Greenwood, and
D. Wagner. Analyzing Inter-Application
Communication in Android. In MobiSys, 2011.

[5] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth.
TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones.
In OSDI, 2010.

[6] W. Enck, D. Octeau, P. McDaniel, and
S. Chaudhuri. A Study of Android Application
Security. In USENIX Security, 2011.

[7] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification.
In CCS, pages 235–245, 2009.

[8] W. Enck, M. Ongtang, and P. McDaniel.
Understanding android security. Security Privacy,
IEEE, 7(1):50–57, jan. 2009.

[9] A. Felt, H. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In USENIX Security, 2011.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
CCS, 2011.

[11] Gartner. Gartner Says Sales of Mobile Devices
Grew 5.6 Percent in Third Quarter of 2011;
Smartphone Sales Increased 42 Percent, Nov. 15
2011.
http://www.gartner.com/it/page.jsp?id=1848514.

[12] Google. Tool for reengineering Android apk files.
http://code.google.com/p/android-apktool/.

[13] Google. 10 Billion Android Market Downloads
and Counting, Dec. 2011.
http://android-developers.blogspot.com/2011/12/
10-billion-android-market-downloads-and.html.

[14] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic Detection of Capability Leaks in Stock
Android Smartphones. In NDSS, 2012. To appear.

[15] P. Hornyack, S. Han, J. Jung, S. Schechter, and

13

http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-android-devices-
evo-3d-4g-thunderbolt-others-exposes-phone-numbers-
gps-sms-emails-addresses-much-more
http://www.gartner.com/it/page.jsp?id=1848514
http://code.google.com/p/android-apktool/
http://android-developers.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://android-developers.blogspot.com/2011/12/10-billion-android-market-downloads-and.html

D. Wetherall. These aren’t the droids you’re
looking for: retrofitting android to protect data
from imperious applications. In CCS, pages
639–652, 2011.

[16] M. Nauman, S. Khan, and X. Zhang. Apex:
extending android permission model and
enforcement with user-defined runtime
constraints. In ASIACCS, pages 328–332, 2010.

[17] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in android. In ACSAC, pages 340–349,
2009.

[18] T. Vidas, N. Christin, and L. F. Cranor. Curbing
Android Permission Creep. In W2SP, 2011.

[19] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh.
Taming information-stealing smartphone
applications (on android). Trust and Trustworthy
Computing, pages 93–107, 2011.

14

	Introduction
	Motivating Example
	Fine-grained Permissions for Android
	Implementing fined-grained permissions in Mr. Hide
	Android platform overview
	Permission implementations

	Dr. Android
	Transforming bytecode files
	Mr. Hide-specific rewrites

	Experiments
	Microbenchmark performance
	Mr. Hide and Dr. Android on real apps

	Related Work
	Conclusions and Future Work
	References

